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Abstract

Melo, Bruno Fernando Abreu de; Guerreiro, Thiago Barbosa dos 
Santos (Advisor). Tweezers and Cavities: developing tools 
for an Optomechanics Laboratory. Rio de Janeiro, 2019. 104p. 
Dissertação de Mestrado – Departamento de Física, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Optomechanics is a growing field that studies systems where light
and mechanical motion are coupled via radiation pressure. In this work, we
present the basic theory regarding optical cavities and optical tweezers, two
important tools that are often used in optomechanical setups, as well as their
experimental implementations. On the subject of optical cavities, we present
the implementation of Fabry Pérot cavities formed by one plane mirror and
one spherical mirror and cavities formed by two spherical mirrors, both
on the confocal and on the non-confocal configuration, and compare the
performance of these different cavities. On the subject of optical tweezers,
we present an optical tweezer capable of trapping micro-spheres in a water
medium and use it to study the movement of trapped particles.

Keywords
Optomechanics; Gaussian Beams; Optical Cavities; Optical Twee-

zers;
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Resumo

Melo, Bruno Fernando Abreu de; Guerreiro, Thiago Barbosa dos
Santos. Pinças e Cavidades: desenvolvendo ferramentas
para um Laboratório de Optomecânica. Rio de Janeiro, 2019.
104p. Dissertação de Mestrado – Departamento de Física, Pontifícia
Universidade Católica do Rio de Janeiro.

A optomecânica é um campo em crescimento que estuda sistemas nos
quais luz e movimento mecãnico estão acoplados por meio de pressão de
radiação. Neste trabalho apresentamos a teoria básica acerca de cavidades
ópticas e pinças ópticas, duas importantes ferramentes frequentemente uti-
lizadas em experimentos de optomecânica, bem como suas implementações
práticas. No que diz respeito a cavidades ópticas, nós apresentamos a imple-
mentação de cavidades de Fabry Pérot formadas por um espelho plano e um
espelho esférico e de cavidades formadas por dois espelhos esféricos, tanto
na configuração confocal como na configuração não confocal, e compara-
mos a performance dessas diferentes cavidades. No que diz respeito a pinças
ópticas, nós apresentamos uma pinça óptica capaz de aprisionar esferas mi-
crométricas em um meio aquoso e a usamos para estudar o movimento de
partículas aprisionadas.

Palavras-chave
Optomecânica; Feixes Gaussianos; Cavidades Ópticas; Pinças

Ópticas;
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1
Introduction

The nature of light has been a question of major importance in the history
of science [1]. Today, we know among other things that light carries momentum
and that it can interfere.

Momentum transfer due to interaction with light is taking place all
around us and at every moment, but it is just too small to be noticed in
every-day life. Although some experiments have been able to demonstrate the
force caused by momentum transfer between light and macroscopic objects in
the begining of the last century [2, 3], it wasn’t until the 60’s, when Maiman
invented the laser [4], that the possibility of routinely observing this force,
called radiation pressure, became a reality [5–7].

Lasers emit a large amount of photons of the same energy and momentum
concentrated in a small region. This “coherent nature” of laser light can be used
- as first demonstrated by Ashkin in 1970 - to accelerate and trap micron-sized
particles [8]. In 1986, influenced by Steven Chu, who was also working in the
Bell Laboratories and was trying to trap atoms, Ashkin built a setup capable of
trapping dielectric particles using a single tightly focused laser beam [9]. Since
both atoms and sub-micron sized dielectric particles can be treated as electric
dipoles, this apparatus, which today is known as an optical tweezer, served as
a proof of principle demonstration to what Chu was trying to accomplish.

An optical tweezer consists of a tightly focused laser beam that, due
to the momentum transfer between the photons from the laser and the
particle, pushes the particle towards the laser’s focal region. Under the right
circumstances, this focal point is a stable equilibrium position of the particle,
enabling the manipulation of particles with sizes ranging from dozens of
nanometers [10, 11] all the way to dozens of micrometers [12].

Another important feature of light is interference. This is the fundamental
property behind a class of devices called optical resonators [13]. In these
devices, the optical field can be amplified due to interference when the light’s
frequency matches the resonator frequency.

One possible realization of such device is the Fabry-Pérot cavity, which
will be greatly exploited in this work: two mirrors are placed parallel to each
other and a laser beam is directed to one of them [14]. The light that enters
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this cavity will be reflected multiple times by the mirrors and, if it has the right
frequency, constructive interference will take place building up the optical field
inside the cavity [15,16].

Radiation pressure and interference form, together, the basis of optome-
chanics, a branch of physics that studies systems in which light is coupled
to mechanical motion [17]. In such systems, light exerts force upon a me-
chanical oscillator, which in turn can affect light resonance inside an optical
resonator [18].

Together, cavities and tweezers span a wide range of possibilities in terms
of optomechanics experiments [19,20]. These include applications on quantum
communication networks, quantum information and metrology protocols, as
well as fundamental science [21–26]. One future aim of our laboratory is the
execution of an experiment that unifies both tools in a highly sensitive force
and displacement sensor aimed at fundamental physics tests.

A conceptual schematic of this sensor is shown in Figure 1.1: a dielectric
sphere is trapped by an optical tweezer and placed close to a thin membrane,
which is coupled to the resonant optical field present inside the cavity. If a
force between the two objects arises, the membrane is deformed, affecting the
cavity’s resonance [27]. This could be useful in the search for new fundamental
Yukawa-type forces of nature which would manifest at and below scales of a
micrometer [28–30].

M1 M2

Membrane

Sphere

Figure 1.1: Conceptual schematics of our proposed optomechanical force
sensor.

Implementing this fundamental physics experiment is a challenging task.
We have therefore broken it down into two parts: the first one is to build an
optical tweezer capable of trapping micro-spheres in vacuum; the second one
is to build a membrane-in-the-middle optomechanical resonator. This work is
dedicated to the very first setps towards these tasks and their full integration.

We have built an optical tweezer capable of trapping micro-spheres in
water, as means to better comprehend this optical tool before moving on
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to trapping spheres in vacuum. On the resonator side, we have built and
studied Fabry-Pérot cavities formed by spherical mirrors, as it should be for
a membrane in the middle configuration [27], and also cavities formed by a
plane mirror and a spherical mirror, since this will be useful if we decide, in
the future, to work with cavities having one moveable mirror [31].

In order to understand optical cavities and optical tweezers, it is im-
portant to understand the behaviour of the coherent radiation emitted by
lasers. Therefore, we start, in Chapter 2, by demonstrating how the elec-
tromagnetic theory gives rise to Gaussian beams, Hermite-Gauss beams and
Laguerre-Gauss beams. We also present a method for calculating how these
beams propagate and interact with optical elements in the laboratory.

Once that is done, we have the tools to derive the basic theory regarding
optical cavities, which is done in Chapter 3. Important cavity parameters are
introduced and mathematically related to the optical properties of the cavity’s
mirrors. Then, we discuss what the cavity’s parameter should be in order
to be compatible with the used laser beam or conversely, what the beam’s
parameters should be in order to be compatible with a given cavity. This
results in mathematical expressions that can be used to design a cavity setup.

This expressions are then used to implement our optical cavities, which
are detailed on Chapter 4. As we’ve said previously, we implement both a cavity
formed by a plane and a spherical mirror and a cavity formed by two spherical
mirrors. We also implement the latter in the confocal configuration, in order to
demonstrate the mode degeneracy inside the cavity. This concludes our work
with optical cavities, and allows us to start the study of optical tweezers.

Just like we did for optical cavities, we start the study of optical tweezers
with a theoretical chapter, which is Chapter 5. First, the three regimes in which
optical trapping can take place are presented: the geometrical optics regime,
which provides a simple picture of the interaction between a laser beam and
a relatively large dielectric sphere, the dipole regime, which approximates a
small particle to an electric dipole, resulting in explicit mathematical formulas
relating all the tweezer’s relevant quantities, and the Mie regime, which treats
optical trapping in terms of the full electromagnetic theory. After that, the
motion of trapped particles is discussed, and important measurable quantities
regarding it are presented.

Once again following the approach used for optical cavities, we dedicate
Chapter 6 to present the experimental implementation of an optical tweezer. In
order to test the functionality of our apparatus, tweezer is used to trap spheres
of different materials and different sizes. Once the optical tweezer passes this
initial test, we study the browninan motion of particles confined by harmonic
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potential by trapping spheres and measuring the autocorrelation function and
the power spectral density of their movement. This allows us to calibrate our
optical tweezer, making possible for it to be used in real force measurement
experiments.

Finally, on chapter 7, we briefly review the experimental achievements
resulting from the implementations presented in the previous chapters. Special
attention is devoted, to present our perspectives regarding the force sensor
already described and other branches which we would like to explore, such as
optical tweezers in liquids, statistical mechanics with micro-spheres and cavity
optomechanics.
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2
Gaussian beams and their propagation

The fundamental concept underlying both optical cavities and optical
tweezers is that of a Gaussian beam, which regards the specific intensity and
phase structure that light assumes in most optics experiments. In this chapter,
we are going to see how the laws of electromagnetism give rise to Gaussian
beams, as well to Hermite-Gauss and Laguerre-Gauss beams, under certain
assumptions. Since the existence of Gaussian beams relies on the wave nature
of light, geometric optics is insufficient to calculate their propagation and,
therefore, we will also present a method for performing such calculations. In
the end of the chapter, we’ll use the developed concepts and methods to discuss
the real nature of collimated beams in a laboratory.

2.1
The paraxial approximation

2.1.1
Gaussian Beams

In the absence of charges and currents - which is the case of the
experiments detailed in this work - the electromagnetic field dynamics can
be descrbied by Maxwell’s equations, a set of four differential equations in
which the electric field ~E and the magnetic field ~B are coupled [32]:

∇ · ~E =0; (2-1a)

∇× ~E =− ∂ ~B
∂t

; (2-1b)

∇ · ~B =0; (2-1c)

∇× ~B =µε∂
~E
∂t
. (2-1d)

where µ and ε are, respectively, the magnetic permeability and the electric
permittivity of the medium.

In order to uncouple those equations and have better insight in how
they dictate the electromagnetic field behaviour, the curl operator can be
applied to equation 2-1b, yielding, after using the vector identity ∇(∇ ~A) =
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Chapter 2. Gaussian beams and their propagation 20

∇(∇ · ~A)−∇2 ~A together with equation 2-1d:

∇2~E = µε
∂2~E
∂t2

(2-2)

This has the form of the well-known wave equation. The most commonly
used basis for the solutions of this equation is the set of plane wave solutions
given by:

~E = ~E0 sin ( ~km · ~r − ωt) (2-3)
Equation 2-3 describes a plane wave that propagates in the k̂m direction

with frequency ω, wavelength λm = 2π/km and velocity cm = 1/√µε. As a
matter of fact, any solution can be decomposed onto the plane wave basis set
by taking the inverse Fourier transform of the electric field:

~E(~r, t) =
∫
~̃E(~km, ω)ei~km·~reiωt d3~km dω (2-4)

where ω and |~km| are related by the dispersion relation:

(k2
m − ω2µε) = 0, (2-5)

In most applications we are concerned with monochromatic light, imply-
ing a constant ω (and, due the dipersion relation, a constant |~km|. Therefore,
we can rewrite the electric field as ~E(~r, t) = <( ~E(~r)eiωt), solve our problems
considering only ~E(~r) and then go back to ~E(~r, t).

Of special interest in laser physics are the paraxial solutions for the
electric field [33]. These are solutions that describe beams that propagate
in a given direction and have a transverse profile that varies slowly in the
longitudinal direction. Mathematically, if we consider a beam propagating
along the z axis, this is equivalent to say that:∣∣∣∣∣∣∂

2|~E|
∂z2

∣∣∣∣∣∣�
∣∣∣∣∣∣∂

2|~E|
∂x2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∂

2|~E|
∂y2

∣∣∣∣∣∣ , k
∣∣∣∣∣∣∂|

~E|
∂z

∣∣∣∣∣∣ (2-6)

allowing for certain approximations to take place in Equation 2-2. Instead of
carrying out these approximations, we shall focus on the Fourier decomposition
of a paraxial beam.

In this decomposition, the longitudinal component of wave vector will be
much larger than the transverse components of the wave vector. This allows
for the approximation [34]:

km,z =
√
k2
m − k2

m,x − k2
y,m ≈ km −

k2
m,x + k2

m,y

2km
(2-7)

This paraxial approximation can be used to calculate the electric field in all
points of space provided that the field distribution at a given transverse plane
is known. If the electric field at the plane z = 0 is given by:
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~E(x, y, 0) =
√

2
π

~E0

ω0
e−ρ

2/ω2
0 (2-8)

then its Fourier transform in the xy plane reads:

~̃E(km,x, km,y, 0) =
~E0ω0

(2π)3/2 exp
[
−ω

2
0

4 (k2
m,x + k2

m,y)
]

(2-9)

Now each of these components must be propagated through space, which
is done by multiplying 2-9 by an exponential factor ei~km·~r. The resultant electric
field will then be given by:

~E(x, y, z) =
∫
~̃E(km,x, km,y, 0)ei~km·~r d~km (2-10)

Plugging equation 2-9 into 2-10 and using 2-7 to substitute km,z gives the
electric field of a Gaussian beam:

~EG(x, y, z) = ~E0e
ikmzu00(x, y, z) (2-11)

where u00(x, y, z) is the fundamental Gaussian mode, given by:

u00(ρ, z) =
√

2
π

1
ω(z) exp

(
− ρ2

ω(z)2 − iζ(z) + ikm
ρ2

2R(z)

)
(2-12)

where ω(z), R(z), ζ(z) and zR are called beam width, wavefront radius, Gouy
phase shift and Rayleigh range, respectively, and are given by:

ω(z) = ω0

√
1 + z2

z2
R

(2-13a)

R(z) = z

(
1 + z2

R

z2

)
(2-13b)

ζ(z) = arctan z

zR
(2-13c)

zR = πω2
0

λm
(2-13d)

The electric field expression shown in equation 2-11 reveals some impor-
tant beam parameters. The first of them is the beam width ω(z). To see why
this parameter is a measure of the width of the beam, it is useful to calculate
the intensity of the electromagnetic field :

I(x, y, z) = cε

2 |
~EG|2 = I0

ω2
0

ω(z)2 exp
(
− 2ρ2

ω(z)2

)
(2-14)

As it can be seen, the beam width ω(z) gives the distance from the z
axis at which the intensity is reduced to 1/e2 of the intensity at the center of
the beam. Figure 2.1 shows the intensity distribution at the plane z = 0. This
figure and all other simulations and theoretical plots presented in this work
were made using the software Mathematica.
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2.1(a): 2.1(b):

Figure 2.1: Transverse intensity profile for the Gaussian mode at z = 0.
.

From equation 2-13a, we can see that the beam width has a minimum ω0

at z = 0. This is called the beam waist. Also, it can be seen that for z � zR,
the dependence of the beam width with z becomes linear:

ω(z) ≈ λm
πω0

z (2-15)

Therefore, the parameter zR gives the range of non-linear behavior of the
beam longitudinal profile.

The linear coefficient of equation 2-15 is called the Numerical Aperture
(NA), and it gives a measure of how divergent a beam is:

NA = λm
πω0

(2-16)

Finally, R(z) gives the radius of curvature of the wave front, which is
nearly spherical close to the beam axis [34]. Figure 2.2 shows a Gaussian beam
longitudinal profile, highlighting the parameters presented above.

Figure 2.2: Longitudinal profile of a Gaussian beam, defined as the beam width
outline.
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2.1.2
Higher order transverse modes

The Gaussian solution to the paraxial equation is one of many possi-
ble solutions. More general solutions are the Hermite-Gauss solutions and the
Laguerre-Gauss solutions, which have a electric field distribution given, respec-
tively, by [34]:

~EHG
m,n(x, y, z) = ~E0e

ikmzuHGm,n(x, y, z) (2-17a)

~ELG
l,p (x, y, z) = ~E0e

ikmzuLGl,p (x, y, z) (2-17b)
where uHGm,n and uLGl,p are the Hermite-Gauss and the Laguerre-Gauss modes,
respectively, which are given by:

uHGm,n(x, y, z) = cHGm,nHm

(√
2x

ω(z)

)
Hn

(√
2y

ω(z)

)
e−i(m+n)ζ(z)u00(x, y, z) (2-18a)

uLGl,p (x, y, z) = cLGl,p

(√
2ρ

ω(z)

)|l|
Llp

(
2ρ2

ω(z)2

)
e−i(2p+l)ζ(z)eilφu00(x, y, z) (2-18b)

where cHGm,n and cLGl,p are normalization constants.
In equation 2-18a, Hm and Hn are the Hermite polynomials of order m

and n, respectively, with m,n ∈ N. In equation 2-18b, Lpl is the generalized
Laguerre polynomial with l ∈ Z and p ∈ N [35]. The values of m,n or l, p
determine the order of the mode. For a Hermite-Gauss mode, the order is
given by N = m + n, while for a Laguerre-Gauss mode the order is given by
N = 2p + |l|. The transverse intensity profile for m,n, l, p ∈ 0, 1, 2 are shown
in Figure 2.3.

As it can be seen, m and n determine how many dark voids will appear
in the horizontal and in the vertical direction, respectively. For the Laguerre-
Gauss modes, p determines the number of dark rings in the profile, while l 6= 0
determines the presence of a dark singularity at the center of the beam.
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2.3(a): 2.3(b):

Figure 2.3: Transverse intenisty profile for higher-order beams: (a) Hermite-
Gauss beams; (b) Laguerre-Gauss beams.

.

The set of all Hermite-Gauss modes - as well as the set of all Laguerre-
Gauss modes - is a complete orthonormal basis for the paraxial solutions of the
electric field wave equation 2-2. That means that any paraxial solution can be
decomposed as a superposition of Hermite-Gauss modes - or Laguerre-Gauss
- modes [34].

As an example, let ~F (~r) = F (~r)eikmz ε̂ be a generic electric field in the
paraxial approximation. We can write F (~r) as a superposition of Hermite-
Gauss modes:

F (x, y, z) =
∞∑

m,n=0
CF
m,nu

HG
m,n(x, y, z) (2-19)

Equation 2-19 must hold for all values of z. Taking z = 0, multiplying
both sides by [uHGm′,n′(x, y, 0)]∗ and integrating over all x and y, we find:

CF
m,n =

∫ ∞
−∞

∫ ∞
−∞

F (x, y, 0)[uHGm′,n′(x, y, 0)]∗ dx dy (2-20)

In order to calculate the coefficients CF
m,n we need to know the nor-

malization constants cHGm,n. These values can be calculated by integrating
|uHGm,n(x, y, z)|2 over x and y and imposing that the result is equal to 1. This
yields:

cHGm,n = (2m+nm!n!)−1/2 (2-21)
By taking the squared absolute value of both sides of 2-19 and integrating

over all x and y we find, after using the orthonormality of the Hermite-Gauss
modes, that the total power at any given z plane will be given by the sum of
the powers of each mode, which in turn is given by:
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Pmn = cε

2 |C
F
m,n|2 (2-22)

Similar calculations can be carried out in order to decompose a generic
paraxial solution onto the Laguerre-Gauss basis and to calculate the power of
each component [36].

2.2
Beam propagation through optical elements

2.2.1
ABCD matrix and the q parameter

Although equation 2-11 gives the electric field of a Gaussian beam in its
full form, there is a better formalism to be used in order to calculate how a
beam propagates through a series of optical elements. By the definitions of the
beam width and the wave front radius, given by equations 2-13a and 2-13b
respectively, we can see that, for a beam having a waist at z0:(

1
R(z − z0)

− i λ

πω(z − z0)2

)−1

= z − z0 + izR (2-23)

That means that the quantity in the left side of 2-23 evolves linearly with
z. Moreover, its real part is null at the waist of the beam and the imaginary part
contains the information, according to the definition in equation 2-13d, about
the beam waist size itself. This is very useful, because looking at equation 2-11
we can see that the electric field is completely defined by the wavelength, the
beam waist and the beam waist position. Therefore, it is convenient to define
the left side of equation 2-23 as a quantity q(z) that evolves linearly with z

and use this quantity when propagating a Gaussian beam through space:

q(z) = q0 + z − z0

Re[q(z′)] = 0←→ z = z0

Im[q(z)] =
πω2

0

λ

(2-24)

Equation 2-24 also holds for Hermite-Gauss and Laguerre-Gauss beams,
since the definition of beam width and wave front radius for those beams is
the same as those for a Gaussian beam.

It is necessary to calculate how q(z) transforms when the beam goes
through optical elements, like lenses and mirrors. To do so, it is useful to make
a small digression and study how light rays propagate through these elements
in the geometrical optics theory.

In geometrical optics, a ray propagating in a plane free of optical elements
is completely defined by the distance from the ray to a given axis at a given
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point and the angle the ray makes with that axis. That is, if we specify the
quantities h and θ at the point P for the ray in Figure 2.4(a) we can reconstruct
its path in the entire plane [37].

2.4(a):

.
zh

h'

θ θ'

2.4(b):

.

Figure 2.4: Parameters h and θ for light rays in geometric optics: (a) definition
of the parameters; (b) change in the parameters when the ray passes through
a generic optical element.

.

If an optical element is introduced, the ray’s path will be altered, and it
will have, generally, different h and θ before the element and after the element,
as shown in Figure 2.4(b). The values of these quantities at the output depend
on the element properties and on the values of these quantities at the input. If
θ is small - that is, if the ray is a paraxial ray - this dependence will be linear,
and can be written in the form [38]:h′

θ′

 =
A B

C D

 h
θ

 (2-25)

The specific values of A,B,C,D for different elements can be calculated,
in general, using simple geometrical optics laws, which are presented in Figure
2.5.

It is worth noticing that the law for lenses and spherical mirrors are very
similar. In fact, it is often useful to treat a reflection by a spherical mirror as
a transmission through a lens with focal distance equal to half the radius of
curvature of the mirror. This equivalence also holds for the plane mirror, and
will be explored in more detail when optical cavities are introduced.

DBD
PUC-Rio - Certificação Digital Nº 1812659/CA



Chapter 2. Gaussian beams and their propagation 27

Figure 2.5: Geometric laws used to derive the ABCD matrices.

By making use of the relations presented in Figure 2.5, it possible to
calculate the matrices for a variety of optical elements. For the purposes of
this work, there are three matrices in which we are interested: the matrix for a
thin lens, the matrix for a plane mirror, the matrix for a spherical mirror and
the matrix for a homogeneous medium with refractive index n. Each of those
elements are shown in Figure 2.6. The equivalence mentioned in the previous
paragraph between lenses is applied to the mirrors matrices.

Now that the ABCD matrices have been introduced, we can go back to
discussing the propagation of Gaussian beams. It can be proven that when a
beam passes through the optical elements we are interested in, its parameter
q transforms according to [37]:

q′ = Aq + b

Cq +D
(2-26)

where the values of A, B, C and D are the same as the values of A, B, C
and D of the matrix that represents the optical element in geometrical optics.
Therefore, one can calculate how a Guassian beam will propagate through a
series of optical elements only by using the matrices derived from geometrical
optics and the relations shown in 2-24.
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Figure 2.6: ABCD matrices for four different optical elements.

2.2.2
ABCD calculation example

To exemplify the ABCD method, consider a beam that has a waist ω0

at z0, as shown in Figure 2.7. The parameter q at z0 is, according to equation
2-24, q0 = iπω2

0/λ. If a lens is positioned at zL, the beam will have a new
waist at a new position after going through the lens. In order to calculate the
parameter q at a point z > zL, the propagation can be divided in three parts:

1. A propagation over a distance zL - z0 through a medium with n = 1;

2. A passing through the lens;

3. A propagation over a distance z − zL thorugh a medium with n = 1.

The total ABCD matrix will be the product M3M2M1 of the ABCD
matrices of each part. Therefore:

M =
1 z − zL
0 1

 1 0
−1/f 1

 1 zL − z0

0 1

 =

= 1
f

f − z + zL f(z − z0) + (z − zL)(z0 − zL)
−1 f + z0− zL

 (2-27)

Since the parameter q0 at z0 is known, Equation 2-26 can be used,
together with the values provided by the matrix M from equation 2-27 to
calculate the parameter q(z) for any z > zL. By making use of the relations
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presented in 2-24 involving the real and imaginary parts of q, we can calculate
the waist and the waist location after the lens.

Similar calculations hold for more complex situations where more optical
elements are present. Each optical element can be represented by a matrix and
the q parameter can be calculated as described above. This method will be
specially useful when calculations regarding optical cavities are performed in
Chapter 3.

f

z0 zzL

Figure 2.7: Transformation of a beam by a thin lens of focal distance f

positioned at zL. The beam location is z0 before the lens and z after the
lens.

2.2.3
Beam collimation theory

In geometric optics, a collimated beam is a beam consisting of parallel
light rays. Since the rays are parallel, the beam doesn’t diverge, and the beam
is often said to be "focused to infinity". When working with Gaussian beams, a
perfectly collimated beam cannot exist, since it is not a solution to the paraxial
equation. In order to understand what we mean, in this work, by a collimated
Gaussian beam, it is useful to consider the collimation of a beam at the output
of an optical fiber.

Let us consider that a fiber output is positioned at z = 0, and a lens with
focal distance 15.36 mm is positioned at z = zL. If the fiber’s output numerical
aperture is 0.12 and the beam’s wavelength is 532 nm, then the beam’s waist
is 1.41µm, and the q parameter at z = 0, which is the beam’s waist location,
is q0 = 1.18 × 10−5. Using Equation 2-27 we can find the parameter q at any
coordinate z > zL. Equating the real part of this parameter to 0 and solving for
z, we find the waist’s location as a function of zL, and equating the imaginary
part to πω2/λ we can find the new beam’s waist.

Figure 2.8(a) shows the waist’s location z as a function of the lens position
zL. Although z diverges when zL approaches infinity, this is an unrealistic
situation, since an infinite distance between the fiber’s output and the lens
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would require the lens to have an infinite radius in order to collect all the
light exiting the fiber. Therefore, we focus on zL ≈ 15.36 mm, which is the
lens position necessary for collimation according to geometrical optics. In the
interval shown, z has a maximum of 10.06 m for zL = 15.372 mm. That means
that this should be the lens position if we want to focus the beam as far as
possible. For this value of zL, the beam’s waist is 1.303 mm.

Figure 2.8(b) shows the size of the beam’s waist as a function of zL. The
waist has a maximum value of 1.843 mm for zL = 15.36 mm. Since a larger
waist implies smaller numerical aperture, this should be the lens position if we
want the smallest beam divergence. For this value of zL, we have z = 3.07 cm.

In our laboratory, collimation is performed by focusing the beam in a
screen placed as far from the lens as possible, and then tilting the lens in the
direction that would make the beam focus even further. Therefore, we work
with the Gaussian beam analogue of "focusing to infinity".

2.8(a):

oi
2.8(b):

Figure 2.8: Theoretical collimation of a beam: (a) waist location as a function
of the position of the lens; (b) waist size as a function of the position of the
lens.

.

2.2.4
Collimated beams in the laboratory

A more practical calculation method arises from the asymptotic behavior
of the Gaussian beam for z > zR. As we have seen, far from the focus the
beam width evolves linearly with z. The angle of expansion of the beam can
be calculated from the numerical aperture definition given by equation 2-16.
If we know the beam width at the output (input) of a lens and the output
(input) beam waist location, we can calculate the output (input) beam waist.
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This is of particular interest in situations where the output (input) of a
lens is collimated, in the previously discussed sense. In this case, the distance
from the lens to the input (output) waist location is approximately equal to
the lens focal distance.

There are two recurrent situations when dealing with laser beams. In the
first of them, a beam having waist ω0 passes thorugh a lens with focal length
f1, becomes collimated and is then focused by a second lens with focal length
f2, as shown in Figure 2.9(a). The collimated beam width ωc will be given by
the width of the beam right before the first lens. This can be calculated from
the first triangle in Figure 2.9(a), where the angle θ is given by equation 2-16:

ωc = f1 tan θ = f1λ

πω0
(2-28)

After the second lens, the beam is focused again, this time with a beam
waist ω′0. This can be calculated from the second triangle together with the
numerical aperture definition once more:

ω′0 = λ

πNA
= λ

π

f2

ωc
= f2

f1
ω0 (2-29)

The second commonly encountered situtation is shown in Figure 2.9(b).
A beam initially collimated is brought to a focus by a lens with focal length
f1 and is then collimated again by a lens with focal length f2. The quantities
of interest are, usually, the collimated beam width ωc before the lens and the
collimated beam width ω′c after the lens. A simple triangle similarity is enough
to calculate one of those quantities provided that the other is known:

ωc
f1

= ω′c
f2

(2-30)

If the beam’s waist between the lenses is of interest, its calculation can
be easily performed by using the numerical aperture definition as discussed in
the first situation.

ω0 ω0'

f1 f2ωc

2.9(a):

f1 f2

�c

�c'

2.9(b):

Figure 2.9: Approximations involving collimated beams: (a) transformation of a
beam’s waist; (b) transformation of collimated waist (telescope configuration).

.

The concepts and methods introduced in this chapter will be used
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throughout this entire work. In the next chapter, they will be used to study
optical cavities and to calculate relevant quantities regrading them.
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3
Optical cavities

An optical cavity is a structure that allows light to resonate under the
right circumstances. One of the simplest realization of such a structure are
two mirrors placed parallel to each other [16]. If light is directed towards
this structure, it has a probability of entering it, and, once inside it, it will
be reflected multiple times, having a certain probability of leaving the cavity
at each reflection. Due to the wave nature of light, this process will cause
light to interfere inside the cavity, and if it has the appropriate wavelength,
constructive interference will take place, giving rise to resonance.

This chapter is dedicated to the study of this kind of optical cavity, to
calculate how the various parameters present in it affect light resonance and to
discuss what these parameters should be in order for the cavity to have certain
desired characteristics

3.1
The plane mirror optical cavity

To understand how an optical cavity works, it is useful to consider the
case of a cavity formed by two plane mirrors and the propagation of a plane
wave through it. This situation is shown in Figure 3.1, with the wave slightly
oblique so that the different rays can be easily visualized. The incoming electric
E0 will undergo multiple reflections, resulting in a transmitted electric field and
a reflected electric field.

Figure 3.1: Multiple reflection of a plane wave inside a plane mirror cavity.
The rays are displayed at a slight angle with the mirror’s normal in order to
help visualization.
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3.1.1
Transmission and reflection coefficients

Let r and r′ be the reflection coefficients for the air-glass and glass-air
interfaces, respectively, t be the transmission coefficient and δ be the phase
gained by the wave when it goes from one mirror to the other. The resultant
transmitted electric field will be the sum of electric fields that undergo different
numbers of reflections by the mirror before exiting the cavity. The terms on
the right side of Figure 3.1 represent those different electric fields. Summing
all of those terms, we get the following expression for the transmitted electric
field:

Et = E0
t2eiδ

1− r2e2iδ (3-1)
For the reflected electric field, a similar calculation can be made. The

difference is that, instead of a term E0t
2eiδ representing the transmission

through the cavity without any reflection, there will be a term E0r
′ representing

the reflection of the electric field by the glass-air interface of the entry mirror.
The relation between r and r′ is r = −r′, a consequence of the 180 degrees
phase shift that takes place in a reflection by the interface air-glass. By using
this relation, the sum of the terms on the left of Figure 3.1 yields the following
expression for the reflected electric field:

Er = E0r

(
−1 + t2e2iδ

1− r2e2iδ

)
(3-2)

For an ideal mirror, we have r2 + t2 = 1, that is, all of the light is
either reflected or transmitted by the mirror. Because real mirrors are not
perfect, in addition to reflection and transmission though the mirror, we can
also consider that part of the light is lost in other processes, such as scattering,
absorption and diffraction due to finite size of the mirrors. Because energy must
be conserved, we write r2 + t2 = 1 − s2, where s2 is the fraction of the light
that is lost. Substituting this conservation relation in equations 3-1 and 3-2 we
find the following expressions for the transmission and reflection coefficients of
the cavity:

T = |Et|
2

|E0|2
= (1− s2 − r2)2

(1− r2)2 + 4r2 sin2 δ
(3-3a)

R = |Er|
2

|E0|2
= r2 s

4 + 4(1− s2) sin2 δ

(1− r2)2 + 4r2 sin2 δ
(3-3b)

The transmission coefficient has a maximum for δ = nπ, while the
reflection coefficient has a minimum for that same value. Since δ depends on
the cavity length d according to δ = kd, we find the resonance condition for
the plane cavity:
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d = nλ

2 (3-4)
where n ∈ Z. Figure 3.2 shows the reflection and transmission coefficients as a
function of δ for different values of the mirror reflectance Rm = r2, for a cavity
with the coefficient s2 = 0.

As it can be seen in Figure 3.2, the larger the mirror reflectance, the
narrower the peak -or valley - in the transmission - or reflection - coefficient.
The resonance condition can be written in terms of the wave frequency υ:

υn = n
c

2d (3-5)

Since δ is proportional to υ, the dependency of R and T on υ is very
similar as the one displayed in Figure 3.2.

3.2(a): 3.2(b):

Figure 3.2: Spectra for a plane mirror cavity: (a) transmission spectrum; (b)
reflection spectrum.

.

3.1.2
Important cavity parameters

At this point, it is useful to introduce some important quantities. The
first of these quantities is the free-spectral range υFSR. It is the frequency
difference between two resonance frequencies. From equation 3-5 it is easy to
see that, for the plane mirror cavity:

υFSR = c

2d (3-6)

The second quantity is the full width at half maximum υFWHM . As the
name suggests, it is the width of the resonance peak measured where the
transmission coefficient value is half of it’s maximum value.

The third quantity is the cavity finesse F . It is given by the ratio
between the free spectral range and the full width at half maximum. It is
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solely dependent on the cavity losses, not being affected by the cavity length.
Mirrors with high reflectance will form high finesse cavities, since their losses
are small. Although the finesse can be calculated directly from equations 3-3a
and 3-6, there is an approximation that simplifies such calculation.

For large values of mirror reflectance (Rm ≈ 1), T will be constant and
approximately equal to 0 far from the resonance condition, while R will be
constant and approximately equal to 1. Both T and R will only vary when
the frequency is near a resonance frequency. Therefore, the sine functions in
equation 3-11 can be expanded around υn, yielding the following expressions for
the reflection and transmission coefficients near the nth resonance frequency,
for s = 0:

THR(υ) = ((1−Rm)c/4π
√
Rmd)2

((1−Rm)c/4π
√
Rmd)2 + (υ − υn)2 (3-7a)

RHR(υ) = (υ − υn)2

((1−Rm)c/4π
√
Rmd)2 + (υ − υn)2 (3-7b)

Equation 3-7a for THR(υ) is a Lorentzian function in υ centered at υn.
Therefore, the full width at half maximum is given by:

υFWHM = 2
(

(1−Rm)c
4π
√
Rm

)
(3-8)

From equations 3-8 and 3-6, we can write down the following expression
for the cavity finesse:

F = υFSR
υFWHM

= π
√
Rm

1−Rm

(3-9)

Equation 3-9 is consistent with the idea that the finesse is a measurement
of how small the cavity losses are, depending solely on the mirror reflectance
Rm.

When s2 = 0, the coefficients R and T satisfy R + T = 1. Therefore,
the transmission spectrum will be given by 1 minus a Lorentzian function.
Thus, in order to measure the full width at half maximum of a cavity, both
the transmission and reflection spectra can be analyzed.

3.1.3
Losses in the cavity

Finally, let us consider equations 3-3a and 3-3b with s2 6= 0. Since s
only appears in the denominator of these equations, the calculations that led
to equation 3-9 for the finesse of a cavity formed by high reflectance mirrors
are still valid. Therefore, provided that Rm is fixed, an increase in s2 won’t
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decrease the cavity finesse. The main change occurs in the maximum and
minimum values of R and T .

The maximum value of T will be reduced from 1 to:

Tmax = (1− s2 −Rm)2

(1−Rm)2 (3-10)

while the minimum and maximum values of R become:

Rmin = Rms
4

(1−Rm)2 (3-11a)

Rmax = Rm(s2 − 2)2

(R2
m + 1)2 (3-11b)

Furthermore, we note that:

R = (1− s2)
(

1− (1−Rm)2 −Rms
4/(1− s2)

(1−Rm)2 + 4Rm sin2 δ

)
(3-12)

which shows that the reflection spectrum is, in the high reflectance approxi-
mation, a constant value minus a Lorentzian function with full width at half
maximum equal to that of the transmission spectrum Lorentzian. Once more,
both spectra can be analyzed in order to measure the cavity finesse. Figure 3.3
shows these spectra for s2 = 0.007 and two different values of Rm. As it can be
seen, the curves corresponding to the high reflectance mirror are more affected
by a non-vanishing s2. Also, it can be noted that the transmission peak is more
attenuated than the reflection valley.

Figure 3.3: Transmission and reflection spectra for cavities formed by mirrors
having the same loss coefficient, but different reflectances.

3.2
Gaussian beams and optical cavities
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3.2.1
Cavity Modematching

As we’ve already pointed out, perfectly collimated beams are not solu-
tions to the paraxial approximation. Therefore, if a Gaussian beam is used in
a plane mirror cavity, the electric field interference explored in the last section
will not occur: the beam will diverge after a few round trips. In order to avoid
that from happening, the optical cavity must be formed by at least one concave
mirror [37].

If one of the cavity mirrors is concave, a beam with appropriate waist
will return to it’s original shape after one round trip in the cavity. In order to
calculate what this waist must be, in terms of the radius of curvature of the
mirrors and the cavity length, the ABCD treatment introduced in Chapter 2
can be used.

In this work, only cavities formed by one plane mirror and one concave
mirror and cavities formed by two concave mirrors with the same radius of
curvature are of interest. Figure 3.4 shows those two kinds of cavities and
the system of lenses that are equivalent to them for a beam that is reflected
multiple times by the mirrors.

R

z

z

RR

R

R

2

R

2

R

2

R

2

R

2

d

d

d d d

d d d

z0 z1 z2 z3 z4

z

z

Figure 3.4: Representation of optical cavities as infinite arrays of lenses.
Spherical mirrors are represented by thin lenses, while plane mirrors are
represented as thin plates.

There are three kinds of propagation in the equivalent lens systems in
Figure 3.4:

– propagation in air (n = 1) through a distance d;

– propagation through a thin lens with focal length R/2;

– propagation through a thin plane element.
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Using the matrices calculated for each of those elements in Chapter 2,
we find that the matrices corresponding to the propagation from z0 to z4 for
the plane-concave and the concave-concave cavities are, respectively, by:

Mcc =
 1 0
−2/R 1

1 d

0 1

 1 0
−2/R 1

1 d

0 1

 (3-13a)

Mpc =
1 0
0 1

1 d

0 1

 1 0
−2/R 1

 1 d

0 1

 (3-13b)

Since the beam must return to its initial shape after one round trip, we
impose that q4 = q0, with q4 being given by equation 2-26:

q0 = Aq0 +B

Cq0 +D
(3-14)

where the values of A,B,C,D are given by the matrices Mcc or Mpc. By doing
this, we find:

q0,cc = 1
2

(
−d±

√
d(d− 2R)

)
(3-15a)

q0,pc = ±
√
d(d−R) (3-15b)

According to the relations in equation 2-24, q must have a imaginary
part. This leads to the necessary conditions for cavity stability: dcc < 2R for
the concave-concave cavity and dpc < R for the concave-plane cavity. Also,
from equation 2-24, the imaginary part must be positive. This leads to:

q0,cc = 1
2

(
−dcc + i

√
dcc(2R− dcc)

)
(3-16a)

q0,pc = i
√
dpc(R− dpc) (3-16b)

The beam waist is located at the point where Re(q) = 0. That means
that in the concave-concave cavity, it is located in the middle of the cavity, and
for the plane-concave, it is located at the surface of the plane mirror. Using
equations 2-24 and 3-16 to calculate the waists of the cavity, we find [37]:

ω2
0,cc = λ

2π
√
dcc(2R− dcc) (3-17a)

ω2
0,pc = λ

π

√
dpc(R− dpc) (3-17b)

Therefore, the radius of curvature combined with the cavity length fully
determine the cavity waist. Figure 3.5 shows the cavity waist as a function of
cavity length for both types of cavity, for λ = 780 nm and R = 5 cm, which
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are the values we are going to use later in this work. As it can be seen, the
maximum waist is equal for both cavities, and is achieved for a cavity length
equal to the maximum possible cavity length.

In order to achieve good cavity performance, the beam waist and the
cavity waist must have the same size and same location. A beam that satisfies
this condition is said to be modematched. Usually, modematching is done by
placing a lens before the cavity, in order to change the initial beam waist and
its location so that they match the cavity waist parameters. Alternatively, the
beam waist size and location can be measured, and the cavity length can be
chosen so that its waist match the measured beam waist.

Figure 3.5: Cavity’s waist as a function of the cavity’s length.

Further modematching calculations involve taking into consideration the
entry mirror thickness, as well as the lensing effect caused by it. For a plane
mirror, the beam waist is not affected, but its location is. For a concave mirror,
both the beam waist and the waist location are changed. These calculations
are very specific, and we’ll get into more details about them when the real
cavity assembling is described in Chapter 4.

Finally, we note that, since calculations involving the parameter q also
hold for Hermite-Gauss and Laguerre-Gauss modes, equation 3-17 also holds
for higher order beams.

3.2.2
Higher order modes resonance

In the first section of this chapter we discussed the resonance condition for
a plane wave inside a cavity. The condition we found δ = nπ was derived from
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the fact that the transmission coefficient had a maximum when this condition
was satisfied. Had we performed the transmission and reflection coefficients
calculations for a modematched beam - that is, a beam that would preserve
its shape after any number of round trips, allowing interference to take place
- the result would have been the same. The phase increment δ, though, would
depend on the chosen beam.

This phase can be easily calculated from equations 2-17a and 2-17b
for the electric fields of a Hermite-Gauss mode and a Laguerre-Gauss mode,
respectively. In the case of a plane-concave cavity, the beam waist is located
at the entry mirror surface, and the phase can be calculated by setting z = dpc

in equations 2-17a and 2-17b:

δHGmn,pc = kdpc − (1 +m+ n) arctan dpc
zR

(3-18a)

δLGlp,pc = kdpc − (1 + 2p+ l) arctan dpc
zR

(3-18b)

Now, from the condition δ = nπ and using equation 3-17b to substitute
the ω2

0 in zR, we find the resonance conditions [38]:

υpc,jmn
υFSR

= j + 1
π

(1 +m+ n) arcsin
√
dpc
R

(3-19a)

υpc,jlp
υFSR

= j + 1
π

(1 + 2p+ l) arcsin
√
dpc
R

(3-19b)

where j is the number of half-wavelengths of the resonant wave inside the
cavity and υFSR is the free spectral range of a plane mirror cavity with length
dpc. If we calculate the difference between two resonant frequencies either for
a Hermite-Gauss mode or for a Laguerre-Gauss mode, we see that the free
spectral range still is υFSR.

For a concave-concave cavity, because the beam waist is at the center
of the cavity, the phase would be two times the phase we get by setting
z = dcc/2 in equations 2-17a and 2-17b. Performing a calculation similar to
the one performed for the plano-concave cavity, using equation 3-17a for ω2

0,
yields [38]:

υcc,jmn
υFSR

= j + 2
π

(1 +m+ n) arcsin
√
dcc
2R (3-20a)

υcc,jlp
υFSR

= j + 2
π

(1 + 2p+ l) arcsin
√
dcc
2R (3-20b)

Once again, the free spectral range is given by c/dcc. It is clear from
equations 3-19 and 3-20 that different order modes have different resonance
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frequencies. Therefore, if the beam used to pump the cavity is not a pure
Hermite-Gauss or Laguerre-Gauss mode, the resonant mode inside the cavity
can be selected by varying the laser frequency.

Suppose, for example, that a Gaussian beam is used to pump a concave-
concave cavity, but it is slightly misaligned by a small angle θ with the
cavity axis - that is, the axis that join the two mirrors and is orthogonal
to both of them - as shown in Figure 3.6(b). If we define the cavity’s axis
as the z-axis, the beam’s electrical field can be written as a Gaussian beam
~EG(x′, y′, z′) = E0e

ikmz′
u00(x′, y′, z′)ε̂ in a coordinate system x′y′z′ rotated

by an angle θ around the y axis. Then, in the xyz coordinate system, the
electrical field is given, to first order in θ, by ~EG(x + zθ, y, z − xθ) =
[E0e

−ikmθxu00(x+ zθ, y, z − xθ)]eikmz ε̂.

RR

cavity axis

3.6(a):

z

RR z'

xx'

 θ

3.6(b):

Figure 3.6: Representation of misalignment situations: (a) misalignment be-
tween two spherical mirrors, implying a new cavity axis; (b) misalignment
between the beam and the cavity axis.

.

Now, as discussed in the first section of the second chapter of this
work, the term E0e

−ikmθxu00(x + zθ, y, z − xθ) beam can be decomposed
in the Hermite-Gauss basis of the xyz coordinate system [36], resulting in
Hermite-Gauss beams with different powers Pmn given by equation 2-22,
with the coefficients CF

mn calculated from equation 2-20 for F (x, y, 0) =
E0e

−ikmθxu00(x, y,−xθ). Table 3.1 shows the ratio between the power Pm0

contained in low order Hermite-Gauss modes and the total power in the z = 0
plane for different misalignment angles θ. For this simulation, we consider
λ = 780 nm and ω0 = 60µm.
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θ

m
0 1 2 3

0 × 10−4rad 1.00 0.00 1.41×10−32 1.55×10−36

1 × 10−4rad 0.999 5.84 ×10−4 1.70×10−7 3.17 ×10−11

2 × 10−4rad 0.998 2.33×10−3 2.72 ×10−6 2.10 ×10−9

3 × 10−4rad 0.995 5.23 ×10−3 1.37 ×10−5 2.40×10−8

4 × 10−4rad 0.991 9.26×10−3 4.33×10−5 1.34×10−7

Table 3.1: Ratio between mode power and total power for different Hermite-
Gauss modes and different angles between the beam’s axis and the cavity’s
axis.

.

As it can be seen, as θ increases, more power is concentrated in modes
with larger m index. If a frequency sweep is performed in the laser used to
pump the cavity, as long as θ remains much smaller than the divergence angle
of the beam in the far-field [36], secondary peaks will appear at the frequencies
correspondent to these m 6= 0 Hermite-Gauss modes, as we will see in the next
chapter when the experimental realizations are discussed. Similar calculations
hold if the beam axis is slightly translated with respect to the cavity axis, if
the beam waist doesn’t match the cavity waist, or if the beam waist location
doesn’t match the cavity waist location [36]. In the case of a waist mismatch,
Laguerre-Gauss modes would be produced.
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4
Optical Cavities: Experiment

In this chapter we describe the experimental implementation of three
types of optical cavities: a cavity formed by a plane mirror and a concave
mirror, a cavity formed by two concave mirrors in a non-confocal configuration
and a cavity formed by two concave mirrors in the confocal configuration.
Based on the measurements of the finesse, the transmission and the reflectivity
for each one of them, we discuss which type is more adequate for our future
applications and how our setup might be further improved. We also present
some small changes in the calculations presented in the last chapter that allows
us to apply them to our specific experimental setups.

Figure 4.1 shows the setup used in the implementation of the three
kinds of cavity. A 780 nm laser beam is collimated by a lens with focal
distance f1, passes through a quarter-wave plate (QWP) and a half-wave plate
(HWP), acquiring linear polarization, and gets transmitted by a polarizing
beam splitter (PBS). Then it passes through a quarter-wave plate, acquiring
circular polarization, and is focused by a lens with focal distance f2 in order
to get modematched to the cavity. It is then reflected by two mirrors - SM1
and SM2 - which allign the beam with the cavity axis.

λ/4 λ/2

780nm

f1

PBS

λ/4 f2

f3

BS

D
E
T
1

CCD

DET2I)

II)

SM1

SM2

CM1 CM2

Figure 4.1: Schematic of the setup implemented in our laboratory in order to
study different types of cavities.
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The light transmitted by the cavity - formed by the mirrors CM1 and
CM2 - is focused by a lens with focal distance f3, splitted by a beam splitter
(BS), and half of it is focused on a CCD sensor, that allows for visualization of
the transmitted mode, and half of it is focused on a detector DET1 that allows
for measurement of the transmitted intensity. The light reflected by the cavity
passes through the quarter-wave plate once more, acquiring linear polarization,
and is reflected by the PBS onto a second detector DET2 that allows for the
measurement of the reflected intensity.

The specific values regarding the optical elements used in each type of
cavity are presented in the next sections of this chapter.

4.1
General aspects

4.1.1
Theory extensions

The laser we use is an external cavity laser (Toptica DL pro 780 nm). By
changing the voltage applied to the diffraction grating’s piezoelectric actuator,
we can control the laser wavelength, which has a linear response to the applied
voltage. Therefore, in our experiment, we measure the cavity’s transmission
and reflection as a function of this voltage. In the previous chapter our results
were derived using the laser frequency as the variable. Thus, it is useful to
derive the formulas replacing the frequency by the voltage applied to the
piezoelectric actuator.

Since the wavelength response to the voltage is linear, we can write:

λ(V ) = λ0 + α(V − V0) (4-1)
where V is the applied voltage, V0 is the voltage offset, α is the proportionality
constant, which might be positive or negative, and λ0 is the wavelength when
the voltage is equal to its offset value.

From equation 3-6, we know that that the nth resonance frequency is
given by nc/2d. Then, the nth resonance wavelength is given by 2d/n. Thus,
the voltage difference between two resonance voltages is:

VFSR,n = |λn − λn+1|
|α|

= 2d
|α|n(n+ 1) ≈

λ2
n

2|α|d (4-2)

where the absolute value of α is used due to the possibility of it being negative,
which would lead to the resonance voltage Vn being smaller than the resonance
voltage Vn+1. The approximation relies on the fact that n� 1, since it is the
number of half wavelengths present in the stationary wave inside the cavity.

Now, for a small variation δυn of the frequency around υn, we have:
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δυn = − cαδVn
(λ0 + (Vn − V0)α)2 = −cα

λ2
n

δVn (4-3)

Therefore, we can replace υ− υn = δυn in Equation 3-7a by −cαδVn/λ2
n,

which will yield a Lorentzian function with full width at half maximum given
by:

VFWHM,n = λ2
n

|α|c
υFWHM (4-4)

We then define the quantity F = VFSR,n/VFWHM,n, given by:

FV = VFSR,n
VFWHM,n

= λ2
n

|α|c
υFWHM ×

2|α|d
λ2
n

= υFWHM

υFSR
= F (4-5)

Therefore, we can measure the cavity finesse by dividing the voltage
difference between two resonance voltages by the full width at half maximum
of the transmission peak that appears in the measured transmission when
scanning the applied voltage. Furthermore, we notice that, since n � 1,
λn−λn+1 = 2d/(n(n+1)) ≈ 0, which implies that λn is approximately constant,
and, therefore, so are VFSR,n and VFWHM,n.

Another extension has to be made regarding the transmission and
reflection coefficients. In the previous chapter, we assumed that both mirrors
had the same parameters r2, t2 and s2. For the plano-concave cavities, we use
two mirrors with different coatings and, therefore, different parameters. This
can be easily incorporated in the calculations previously presented. Let Rm1

and s2
1 be the reflection and loss coefficients, respectively, for the first mirror

and Rm2 and s2
2 be the reflection and loss coefficients for the second mirror.

Then, the cavity’s transmission and reflection coefficients are given by:

T = (1− s2
1 −Rm1)((1− s2

2 −Rm2)
(1−

√
Rm1Rm2)2 + 4

√
Rm1Rm2 sin2 δ

(4-6a)

R = (
√
Rm1 +

√
Rm2(s2

1 − 1))2 + 4(1− s2
1)
√
Rm1
√
Rm2 sin2 δ

(1−
√
Rm1Rm2)2 + 4

√
Rm1Rm2 sin2 δ

(4-6b)

For a high finesse cavity, the same considerations made in section 3.1.2
can be applied, and the transmission coefficient near resonance will be given,
approximately, by a Lorentzian function, while the reflection coefficient will be
a constant value minus a Lorentzian function. In the present case, however,
the full width at half maximum, in the frequency spectrum, is:

υFWHM = 2(1−
√
Rm1Rm2)c

4π 4
√
Rm1Rm2

(4-7)

which implies that the finesse will be:

F = υFSR
υFWHM

= π 4
√
Rm1Rm2

1−
√
Rm1Rm2

(4-8)

DBD
PUC-Rio - Certificação Digital Nº 1812659/CA



Chapter 4. Optical Cavities: Experiment 47

We are now ready to present our experimental results.

4.1.2
Experimental procedure

For all of our cavity setups we follow the same initial procedure. First,
we start by placing all the optical elements shown in Part I of Figure 4.1, as
shown in Figure 4.2(a). The mirrors SM1 and SM2, in particular, are mounted
on stable mountings (Thorlabs Polaris K1) in order to have precision during the
alignment procedure. The laser is coupled to a fiber in order to get a Gaussian
mode from its initial eliptical mode, and then collimated by an aspheric lens.
The achromatic quarter-wave plate and the half-wave plate are adjusted so
that the transmission through the PBS is maximized.

4.2(a): 4.2(b):

Figure 4.2: Initial steps for the implementation of the optical cavities. (a)
Optical elements corresponding to Part I of Figure 4.1 (b) Measurement of the
beam’s waist and its location by the knife edging method.

.

A doublet lens with focal distance ranging from 200 mm to 300 mm is
placed and the waist of the beam and its location are measured by applying
the knife-edge method [39], as shown in Figure 4.2(b), after the steering mirrors
SM1 and SM2, and fitting the data to the curve given by Equation 2-13a by
means of the method of least squares. Based on the measured values, the cavity
length is determined using Equations 3-17b or 3-17a.

Before placing the cavity mirrors, the remaing components shown in
Part II of Figure 4.1 are placed, as shown in Figure 4.3(a). First, the lens
(f3 =75 mm) and the beam splitter are placed. Then, the CCD camera
(Logitech C310) and the detector DET1 (Thorlabs DET36A2) are placed so
that the beam is focused in the center of both sensors.
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4.3(a): 4.3(b): 4.3(c):

Figure 4.3: Optical elements corresponding to Part II of Figure 4.1. (a) Optical
elements used to monitor the field transmitted by the cavity. (b) Cavity’s
mirrors are replaced by irises during the alignment procedure. (c) Implemented
optical cavity.

.

The mountss for the mirrors CM1 and CM2 are placed, on top of
translation stages, using a digital caliper rule in order to have more precision
over their positions. We use threaded mirror mounts (Thorlabs KM100T) that
allow for quick assemble of the mirrors whenever necessary, without the need
to undo the setup. Also, it allows for placing an iris instead of the mirror, as
shown in Figure 4.3(b), which is necessary during alignment.

For aligning the cavity, we follows an iterative procedure. First, the
second mirror translation stage is moved until the cavity has the desired length,
within 0.01 mm precision, provided by the digital caliper rule. Than, two irises
are threaded to the mountings, and the steering mirrors are used in order
to make the beam pass trough both irises, which are then removed from the
mountings. The second mirror is then threaded to its mount, which is used
to make the reflected beam match the incoming beam. Then, the same thing
is done for the first mirror. When the mounts are adjusted, the cavity length
is changed. Thus, this procedure has to be repeated until three conditions
are satisfied: the cavity length must be the desired one, the beam must pass
through the irises and the reflection of both mirrors must match the incoming
beam. Figure 4.3(c) shows the two concave mirrors in place.

The fine allignment is made using the signals from the CCD camera
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(transmitted light image) and the detector DET1 (transmission as a function
of the applied voltage). The cavity wavelength is scanned using a triangle
waveform with a frequency chosen from a range between 1 Hz and 10 Hz and
the transmitted modes are observed by the camera. The voltage scan amplitude
and offset are set so that only the fundamental mode is transmitted. By doing
so, a single peak is observed in the detector’s signal. Than the steering mirrors
are used to maximize the amplitude of this peak. After doing this, different
voltage ranges can be scanned, and the secondary peaks can be minimized.
The camera’s image is useful in order to know the misalignment direction.
The transmission of the m = 1, n = 0 Hermite-Gauss mode, for example,
indicates that there is a horizontal misalignment.

Finally, the second quarter-wave plate is adjusted so that the beam
reflected by the cavity is reflected by the PBS. The reflected beam is then
focused on detector DET2 (Thorlabs DET100A2), which is used to measure
the cavity reflection as the voltage is scanned. Since this reflected beam has a
power of approximately 50 mW, two neutral density filters (Thorlabs NE04A
and Thorlabs NE10A) are placed in front of the detector to avoid saturation.
Figure 4.4 shows the complete setup.

Figure 4.4: Complete optical setup used in the implementation of our optical
cavities.

4.2
Plano-Concave cavity

The first cavity we implemented was a plano-concave cavity. In this
implementation, the lens used to collimate the beam has a focal distance
f1 of 11.0 mm (Thorlabs C220TME-B), resulting in a collimated beam waist
of 1.05 mm. The lens used for the modematching has a focal distance f2 of
300 mm, resulting in a waist of 68.2µm located at z0 = −12.81 cm, which is
measured with relation to a pedestal that is fixed to the table and defined as
the origin of out z axis.
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Since the plane mirror (Thorlabs BB111-E03P-SP) has a thickness d of
6.0 mm, the q parameter is changed when the beam gets transmitted by the
mirror, which acts like a thick plate. If the mirror front surface is placed at
z = zm1, as shown in Figure 4.5, then the back surface of the mirror is located
at z = zm1 − d, and the q parameter before the mirror is given by:

qbefore = q0 − (z0 − (zm1 − d)) (4-9)
where q0 is the q parameter at z0, that is, at the waist. Since the mirror acts
as a thick plate, the q parameter after the mirror front surface is given by:

qafter = qbefore + d/n = q0 − z0 + zm1 − d+ d/n (4-10)

where n is the plate’s refractive index. Now, for a plano-concave cavity,
the cavity waist is located at the plane mirror surface. Therefore, we want
<(qafter) = 0, which leads to:

zm1 = z0 + d
(

1− 1
n

)
(4-11)

This is where the mirror’s front surface should be located in order to
achieve modematching between the cavity and the beam. For n = 1.46 (fused
Silica) and d = 6.00 mm, this yields zm1 = −12.62 cm for our case.

z

z0,q0

4.5(a):

z

zm1,qafterzm1-d,qbefore

4.5(b):

Figure 4.5: Schematic showing the coordinates and parameters used in the
modematching calculation. (a) Parameter q0 at the coordinate z0 of the beam
waist. (b) Parameter q before and after a plane mirror of thickness d.

.

The waist size doesn’t get affected by the mirror, which means we want
the cavity to have a waist of 68.3µm. Using Equation 3-17b, for a radius
of curvature of the second mirror (Thorlabs CM254-025-E03P-SP) equals to
5.00 cm, we get that the cavity’s length L should be 4.15 cm. Therefore, the
second mirros’s position should be zm2=−8.47 cm.

As we’ve said in the first section, we scan the piezoelectric’s voltage and
measure the cavity’s transmission and the cavity’s reflection intensities, and we
observe the transmitted mode using the CCD camera. Both the transmission
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peaks and the reflection valleys are fitted to a Lorentzian function plus a
constant value. For the transmission, this constant valley is mainly due to the
detector’s noise, while for the reflection, it is mainly due to the light that is
reflected when there is no resonance. From now on, we’ll refer to the Lorentzian
function’s full width at half maximum, amplitude and center coordinate as A,
δV and V0, respectively, and to the constant value as C0.

Figures 4.6(a), 4.6(b) and 4.6(c) show, respectively, a transmission main
peak, a reflection main valley and two consecutive main peaks. For the
transmission peak, we found A = 137 mV, δV = 5.90 mV, V0 = 93.8 V and
C0 = 0.297 mV, and for the reflection valley, A = −0.571 V, δV = 5.71 mV,
V0 = 93.6 V and C0 = 3.61 V. The distance between the two consecutive peaks
was found to be 7.50 V.

4.6(a): 4.6(b):

4.6(c): 4.6(d):

Figure 4.6: Transmission and reflection spectra for the plano-concave cavity.
(a) Plano-concave cavity’s single transmission peak. (b) Plano-concave cavity’s
single reflection valley. (c) Plano-concave cavity’s consecutive transmission
peaks. (d) Transmission and reflection spectra for the plano-concave cavity.

.

The cavity maximum transmission is measured in a two steps procedure.
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The first of them is measuring the same transmission peak 20 times and av-
eraging all the fitted A’s. This yielded a maximum transmission of 141±5 mV.
The second step is converting this value to power units and dividing it by the
laser power measured by the detector before the cavity is placed, which was
measured to be 22.2 mW. The voltage response of the detector DET1 is given
by:

VD = aP + b (4-12)
where a was measured to be (4.70±0.00)mV/µW and b was measured to be
(−12.5±2.2)mV. Therefore, the cavity transmission coefficient during reso-
nance is (0.147±0.005)%.

The cavity finesse is also measured in two steps. The first of them
is measuring the same transmission peak 20 times and averaging all the
fitted δV ’s. This yielded (6.34±0.58)mV. The second step is measuring two
consecutive peaks 20 times and averaging all the voltage differences V0,2−V0,1.
This yielded (7.42±0.00)V. By dividing the averaged voltage difference by
the averaged full width at half maximum, the finesse was calculated to be
1172±101.

Using the values measured for the maximum transmission and for the
finesse, we can use Equations 4-6a and 4-8 to write down two equations relating
Rm1, Rm2, s2

1 and s2
2:

(1.47± 0.05)× 10−3 = (1− s2
1 −Rm1)((1− s2

2 −Rm2)
(1−

√
Rm1Rm2)2 (4-13a)

1172± 108 = π 4
√
Rm1Rm2

1−
√
Rm1Rm2

(4-13b)

We’ll solve equations 4-13 for Rm1 and s2
1 in the next section, when

the two concave cavity mirrors are assumed to be identical, allowing for the
calculation of Rm2 and s2

2.
To exemplify the beam decomposition presented in Table 3.1, we misalign

the cavity in the horizontal direction using the steering mirror SM2. Figure
4.6(d) shows the transmission curve for the misaligned cavity. The voltage
difference between the two peaks is 2.80 V. By scanning each peak separately,
we observe the transmitted modes shown in Figure 4.7, confirming that the
largest peak is due to transmission of the fundamental Gaussian mode, while
the other peak is due to resonance of the m = 1, n = 0 Hermite-Gauss mode.

We can find out whether the coefficient α in Equation 4-1 is positive
or negative using Equation 3-19a and the ratio 2.8/7.4 ≈ 0.378 between the
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distance between the secondary peak and the main peak shown in Figure 4.6(d)
and the distance between two main peaks. First of all, we rewrite Equation
3-19a in terms of the resonance voltage:

Vpc,jmn = V0 + 1
α

−λ0 + c

υFSR

j + 1
π

(1 +m+ n) arcsin
√
dPC
R

−1
 (4-14)

4.7(a): 4.7(b):

Figure 4.7: Cavity transmission patterns when the cavity is horizontally
misaligned and the voltage is scanned around different resonant voltages.
(a) Cavity transmission pattern corresponding to the fundamental mode. (b)
Cavity transmission pattern corresponding to the m = 1, n = 0 Hermite-Gauss
mode.

.

If α > 0, a lower voltage implies a shorter wavelength, which implies
a higher number of half wavelengths inside the cavity. In this case the lower
voltage main peak would correspond to the mode j + 1, 0, 0, the secondary
peak would correspond to the mode j, 1, 0 and the higher voltage main peak
would correspond to the mode j, 0, 0. Then, the ratio would be given by:

Vj,1,0 − Vj+1,0,0

Vj,0,0 − Vj+1,0,0
≈ 1− 1

π
arcsin

√
dpc
R

(4-15)

which equals 0.635 for our case. On the other hand, if α < 0, the lower voltage
main peak would correspond to j, 0, 0, the secondary peak would correspond
to j, 1, 0 and the higher voltage main peak would correspond to j+1, 0, 0. The
ratio, then, would be given by:

Vj,1,0 − Vj,0,0
Vj+1,0,0 − Vj,0,0

≈ 1
π

arcsin
√
dpc
R

(4-16)

which is equal to 0.365 for our case. Since the measured value for this ratio is
0.378, we get that α is negative. Therefore, the higher the voltage, the shorter
the wavelength.
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We can also estimate the magnitude of α. We can use Equation 4-2 with
VFSR,n = 7.42 V, d = 4.15 cm and λn ≈ 780 nm to find that α ≈ −1 pm/V

4.3
Concave-concave cavity

The second type of cavity we implemented was a concave-concave cavity
formed by two identical concave mirrors (Thorlabs CM254-025-E03P-SP). The
lens used to collimate the beam has a focal distance f1 of 15.36 mm (Thorlabs
C260TME-B), resulting in a collimated beam waist of 1.43 mm. The lens used
for the modematching has a focal distance f2 of 300 mm, resulting in a waist
ω0 of 52.6µm located at z0 =15.59 cm.

The modematching calculation for this case is more complex than in the
plano-concave case. If the first mirror’s front surface is placed at z = zm1,
then the back surface is located at z = zm1 − d, where d is the mirror’s
center thickness, and the q parameter just before the back surface is qbefore =
q0− (z0− (zm1− d)). The concave mirror doesn’t act just as a thick plate, but
rather as a thick plate followed by a thin lens. According to the lens maker’s
equation, the focal distance of this lens is given by:

1
f

= (n− 1)
( 1
R1
− 1
R2

)
(4-17)

where n is the lens refractive index and R1 and R2 are the radius of curvature
of the lens surfaces. In our case, R1 = ∞ (plane surface), R2 = 50.0 mm and
n = 1.53.

The q parameter at a coordinate z > zm1 can be calculated starting from
qbefore by calculating the matrix corresponding to the following propagation:

– propagation through a plate with thickness d;

– propagation through a thin lens with focal distance f given by Equation
4-17;

– propagation through a distance z − zm1.

This will yield a matrix ABCD that depends on zm1 and z. Using
Equation 2-26 for calcualting q(z) and making <(q(z′0)) = 0 we can find the
new waist location z′0 as a function of zm1. The new beam waist ω′0 can be
calculated from the imaginary part of q(z′0). Finally, we impose that ω′0 is the
waist corresponding to a cavity with length L = 2(z′0 − zm1), since the waist
must be located at the center of the cavity. This is done using Equation 3-
17a, yielding the coordinate zm1 where the first mirror’s front surface must
be placed. Substituting this value into z′0, we can calculate the cavity length
L = 2(z′0 − zm1).
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The calculation described in the above paragraph is quite extensive,
and results in analytical expressions that are not very elusive. Therefore, the
details regarding it are omitted here. For our case d = 6.00 mm, n = 1.53,
Rm1 = Rm2 = 50.0 mm, z0 = 15.59 cm and ω0 = 52.6µm which leads to
zm1 = 11.12 cm, ω′0 = 74.35µm and L = 7.27 cm.

Figures 4.9(a), 4.9(b) and 4.9(c) show, respectively, a transmission main
peak, a reflection main valley and two consecutive main peaks. For this
particular transmission peak, we found A = 7.85 mV, δV = 4.86 mV, V0 =
92.1 V and C0 = 0.0435 mV, and for this particular reflection valley, A =
−41.2 mV, δV = 4.52 mV, V0 = 931.5 V and C0 = 3.04 V. The distance between
the two consecutive peaks was found to be 4.33 V.

We measure the cavity transmission during resonance following the
same procedure described for the plano-concave mirror, which yielded a
voltage of (8.24±0.31)mV and, therefore, a laser power of (4.41±0.47)µW.
The laser power measured without the cavity was again 22.2 mW, resulting
in a transmission during resonance of (0.0198±0.0021)%. The finesse was also
calculated following the same procedure as the one used in the last section,
yielding V0,2−V0,1 =(4.34±0.00)V, δv =(4.71±0.99)mV and, therefore, a finesse
of 922±193.

Substituting the measured transmission and finesse into Equations 3-10
and 3-9, respectively, we can write down:

(0.198± 0.021)× 10−3 = (1− s2 −Rm)2

(1−Rm)2 (4-18a)

922± 193 = π
√
Rm

1−Rm

(4-18b)

Solving these equations for Rm and s2 yields Rm = 0.9965± 0.0007 and
s2 = 0.0032 ± 0.0007. We can now substitute Rm2 = 0.9965 ± 0.0007 into
Equation 4-13b and calculate Rm1. This yields Rm1 = 0.9981 ± 0.0009. Now,
we can substitute tha values of Rm1, Rm2 and s2

2 into Equation 4-13a and solve
for s2

1, which leads to s2
1 = 0.0019± 0.0009.

As it can be seen in Figure 4.9(c), there were two secondary peaks that
couldn’t be suppressed. To confirm that this didn’t have any influence over
the cavity’s finesse, we increased the misalignment, leading to Figure 4.9(d),
where the first peak is a secondary peak, and the right peak is the main peak.
The finesse was then calculated using the same method described in the last
paragraph, yielding 904±173, confirming that the presence of secondary peaks
doesn’t affect the finesse. This is consistent with the fact the finesse measures
the losses in the cavity, and should depend solely on the mirror’s reflection and
loss coefficients.
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4.8(a): 4.8(b):

4.8(c): 4.8(d):

Figure 4.8: Transmission and reflection spectra for the concave-concave cavity.
(a) Concave-concave cavity’s single transmission peak. (b) Concave-concave
cavity’s single reflection valley. (c)Concave-concave cavity’s consecutive trans-
mission peaks. (d) Transmission peaks corresponding to the resonance of the
fundamental mode and a higher order mode in the concave-concave cavity.

.

4.4
Confocal cavity

The last type of cavity we implemented was a concave-concave cavity in
the confocal configuration. In the confocal configuration, the focus of both
mirrors are coincident. Therefore, the cavity length must be equal to the
radius of curvature. When this happens, the resonance frequencies are given
by Equations 3-20 with dcc = R:

υcc,jmn
υFSR

= j + 1
2(1 +m+ n) = 2j + k

2 (4-19a)

υcc,jlp
υFSR

= j + 1
2(1 + 2p+ l) = 2j + k

2 (4-19b)

where k is an integer.
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Equations 4-19 implies that the resonance frequencies are degenerate.
A m = 1, n = 0 Hermite-Gauss mode (k=2) with j = jHG will have
the same resonance frequency as a fundamental Gaussian mode with j =
jHG + 1. Therefore, if the beam is not properly aligned and/or modematched
to the cavity, the main peak and secondary peaks will be supperposed in
the transmission spectrum. The frequency difference between two peaks then
becomes:

υFSR,confocal = υFSR

(
2j + k

2 − 2j + k − 1
2

)
= υFSR

2 (4-20)

Therefore, the finesse, as defined by the ratio between the free spectral
range and the full width at half maximum, is reduced by, at least, a factor of
2. In reality, the finesse is further reduced due to the fact that small deviations
from the condition dconfocal = R will cause the mode superposition to be
defective, increasing the full width at half maximum of the transmission peak.

For our cavity, the lens used to collimate the beam has a focal distance f1

of 11.00 mm (Thorlabs C220TME-B), while the modematching lens has a focal
distance of f2=300 mm. Differently from the situation we had for the plano-
concave and the concave-concave cavities, when there were no restrictions for
the cavity length, in the confocal configuration we wanted to have a cavity
length L of 5.00 cm. Therefore, the position of the collimating lens with respect
to the fiber output was set so that the beam waist after the modematching
lens was the waist necessary for having a cavity with a length of approximately
5.00 cm. The waist of the beam was measured to be ω0 = 61.0µm, and its
location was found to be z0 = 11.91 cm. From the concave-concave cavity
modematching calculations, the position of the mirrors were calculated to
be zm1 = 8.67 cm and zm2 = 13.54 cm. The second mirror was placed at
zm2 = 13.67 cm to satisfy the confocal condition.

The cavity was then aligned following the procedure described in the first
section of this chapter. Figure 4.9(a) shows a transmission peak and 4.9(c)
shows two consecutive peaks when the cavity is aligned. For Figure 4.9(a), the
fitted values are δ = 14.5 mV, V0 = 94.4 V, C0 = 0.044 mV and A = 4.72 mV,
while for Figure 4.9(c), the distance between the two peaks is 6.27 V. The
finesse was measured to be 381.4 ± 48.2. The larger peak width is due to the
presence of higher order modes that resonate almost at the same frequency as
the fundamental mode, as it can be seen in Figure 4.11(a), which shows the
transmitted light during the resonance peak.
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4.9(a): 4.9(b):

4.9(c): 4.9(d):

Figure 4.9: Transmission peaks for: (a) and (c) aligned confocal cavity; (b) and
(d) misaligned confocal cavity.

.

The cavity was then misaligned by translating the beam horizontally. By
doing this, an extra peak appeared between the two initial peaks, as shown in
Figure 4.9(d),in which the distance between two consecutive peaks is 3.14 V. In
order to guarantee the confocal condition, the transmission peak shape can be
used. When the cavity’s length is too large or too small, the transmission peak
becomes asymmetric. Therefore, we translated the second cavity mirror until
the transmission peak became symmetric. Figure 4.10 shows the transmission
peak when the cavity is too short, too long and with the right length.
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4.10(a): 4.10(b): 4.10(c):

Figure 4.10: Comparison between the shape of transmission peaks when the
cavity’s length is varied. Confocal cavity’s transmission peak when the cavity’s
length: (a) is greater than 2R; (b) is equal to 2R; (c) is less than 2R.

.

By fitting a symmetric transmission peak, as the one shown in Figure
4.9(b), we found: δV = 23.3 mV, V0 = 94.3 V, C0 = 0.114 mV and A = 2.19 mV.
The finesse was measured to be 138.2±9.8. This reduction in finesse was caused
by the fact that the free spectral range was reduced to half of its original value,
and by the superposition of many modes at each resonance peak, which caused
the peaks to become larger. Figures 4.11(b) and 4.11(c) show the transmitted
intensity pattern for two consecutive resonance peaks. As it can be seen, each
of them is a different superposition of multiple modes.

4.11(a): 4.11(b): 4.11(c):

Figure 4.11: Confocal cavity’s transmission pattern under different situations.
(a) Transmission pattern when the cavity is aligned. (b) First type of trans-
mission pattern when the cavity is misaligned. (c) Second type of transmission
pattern when the cavity is misaligned.

.

At this point, it is useful to explain one of the reasons why we performed
modematching between the beam and our confocal cavity. Usually, a collimated
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beam can be used. By doing so, higher order Laguerre-Gauss modes would be
excited [36], and, since they would be degenerated in the confocal configuration,
a pattern of concentric rings would be observed at the output of the cavity
when proper alignment was achieved [40]. In our setup this would not be
possible, since using a collimated beam means larger diffraction loss due to
beam divergence inside the cavity, and the cavity transmission, which is already
small for our high reflectance mirrors, would become negligible. Therefore, we
chose to modematch the beam, in order to reduce diffraction losses, and to
demonstrate the degeneracy by misaligning the beam and exciting higher order
Hermite-Gauss modes.

4.4.1
Discussions

The first important byproduct of this part of our experimental work was
the knowledge on how to implement Fabry-Pérot cavities. We have successfully
implemented the plano-concave cavity, the concave-concave cavity and the
confocal cavity. Each of these cavities can be used in different setups that may
be in the interest of our laboratory. The plano-concave cavity, for example,
will be useful if a cavity with a membrane acting as a moveable mirror [31], as
in Figure 4.12(a), or with a membrane attached to a plane mirror, as in Figure
4.12(b), is to be implemented. The concave-concave cavity will be useful if a
membrane in the middle configuration, shown in Figure 4.12(c), is necessary
in an experiment [27].

The second important byproduct regards the characterization of the
equipment used in the implementation of our Fabry-Pérot cavity. Although
functional, our setup had some drawbacks. The first of them, were the
high mirror losses. Although our mirror’s reflection was significantly high,
as evidenced by the finesse of approximately 103, the magnitude of the
transmission peaks and reflection peaks were significantly reduced by the
presence of losses other than the transmission through the mirror. In future
experiments it might be necessary to achieve a finesse on the order of 104, and,
therefore, it will be even more important that the mirrors have not only high
reflectance, but also that they transmit most of the light that is not reflected.
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4.12(a):

Membrane

4.12(b): 4.12(c):

Figure 4.12: Possible configurations integrating a membrane to a Fabry-
Pérot cavity: (a) Membrane acting as one of the cavity’s mirrors; (b) Plano-
concave analogous of the membrane in the middle configuration; (c) Membrane
positioned in the middle of a cavity (Membrane in the middle configuration).

.

Improvements can also be made on the structure used to hold the cavity
mirrors. The threaded mounts allowed for easier cavity alignment, but reduced
the cavity stability, as evidenced by the large variance in the measured full
width at half maximum of the transmission peaks. Therefore, it became evident
that using a proper cavity etalon will be essential to achieve high cavity
stability.

Finally, we conclude that the confocal cavity doesn’t suit our needs for
high finesse, due to the degeneracy of the modes and the consequent lowering
in finesse. In the next chapter, we explore the theoretical background for the
second part of our experimental work, which will be presented in Chapter 6.
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5
Optical Tweezers

Optical tweezers are important tools currently employed not only in
physics experiments, where they can be used to measure small forces [28, 29,
41, 42], but also in other branches of science, such as biology, where it can be
used to manipulate living microorganisms [43–46].

The working principle of an optical tweezer is the transfer of momentum
between a laser beam and a particle. When the laser beam is tightly focused,
this transfer of momentum results in a force that pushes the particle towards
the focal region, creating what is also called an optical trap. Figure 5.1 shows
a simplified schematic of an optical tweezer: a laser beam is focused by an
objective lens, resulting in the trapping of a dielectric sphere around the origin.

There are different ways to understand how a focused laser beam can
generate an optical trap. In this chapter, we present three regimes under which
optical trapping can happen, and calculate how parameters like the NA of the
objective lens, the wavelength of the beam and the particle’s size can affect
the behaviour of an optical tweezer.

Figure 5.1: Schematic of an optical tweezer, showing an objetive lens focusing
a laser beam, causing a sphere to be trapped at the focal region.

5.1
Geometrical Optics Approximation

The easiest way to have an idea on how an optical tweezer works is to use
the geometrical optics approach, which is valid when the wavelength is small
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in comparison with the particle’s size (in the case of a sphere, R ' 10λ, where
R is the sphere’s radius and λ is the wavelength) [47].

Consider a dielectric sphere, having a refractive index larger than that
of the medium in which it is in, located exactly at the focus of a light beam,
as shown in Figure 5.2(a), where only the beam’s outer rays are displayed. In
this situation, the rays are perpendicular to the sphere’s surface and are not
refracted.

Consider, now, that the particle moves slightly to the right, as shown in
Figure 5.2(b). In this case, the light rays get refracted when they enter the
sphere and then again when they exit it. As a result, if the sphere’s refractive
index is greater than that of the medium, the rays are deviated to the right.
Since light carries momentum, that means that the rays must have transferred
momentum in the opposite direction, causing a force that pushes the sphere
back to the beam focus.

Similarly, if the sphere is slightly moved down, the light rays will get
refracted and deviated as depicted in Figure 5.2(c), resulting, again, in a force
that will push the sphere back to the focus. Therefore, at least for small
displacements, the sphere is said to be "trapped": the force exerted by the
light always tends to push the sphere back to the focal point.

5.2(a): 5.2(b): 5.2(c):

Figure 5.2: Refraction of light rays (red arrows) by a sphere under the
geometrical optics approximation and the forces generated by it (green arrows)
when: (a) the sphere is at the focus; (b) the sphere laterally displaced; (c) the
sphere is vertically displaced. The green arrows indicate the force acting on
the sphere.

.

In order to calculate the force acting on the sphere, not only refraction
should be taken into account, but also reflection. When the beam hits the
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sphere, part of it is reflected and, by the same argument of momentum
exchange, the sphere is pushed in the direction of the propagation of the beam.
Moreover, when a ray inside the sphere hits the sphere surface, it is both
refracted and reflected back to the sphere interior. This process of multiple
reflection and refraction is illustrated in Figure 5.3 for a single light ray.

Figure 5.3: Multiple reflections and refractions of a light ray that hits a sphere.

We can calculate the force due to a single ray by considering the difference
between its momentum before hitting the sphere and the total momentum of
the reflected and transmitted rays. If the ray power is Pi and the medium
refractive index in nm, this force will be [34]:

~F = nmPi
c

r̂i −
nmPr,0
c

r̂r,0 −
∞∑
n=1

nmPt,n
c

r̂t,n (5-1)

and the total force will be the sum of the forces caused by each individual ray.
Because the light intensity gets smaller after each refraction or reflection,

most of the contributions to ~F will come from the rays rr,0 and rt,1. If the
sphere’s center is positioned at the beam’s central axis, the first reflection
of the light rays will cause a scattering force in the direction of the beam’s
propagation. If this force is larger than the restoring force caused by the rays
rt,1, trapping won’t be possible, and the sphere will be pushed away from
the focal point. The fact that a larger refractive index difference between the
medium and the sphere increases reflection is one of the reasons why it is
harder to trap a sphere in air than in water.

A special situation happens when the sphere’s refractive index is smaller
than the medium’s refractive index. In this case, the conclusions we draw from
Figure 5.2 are not valid: the rays will be deviated in the opposite direction.
This will cause the sphere to be pushed away from the focus both by the
refraction and the reflection processes. This was first observed by Ashkin [8]
through the use of air bubbles (n ≈ 1) in a Glycerol (n ≈ 1.47) sample.
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5.2
Dipole Approximation

5.2.1
Forces on an electric dipole

In the last section we gave an overview on how one can calculate the
forces that arise when a beam is focused on a sphere much larger than the
beam’s wavelength(R ' 10λ). Now, we move our focus to the approximate
treatment one can use in order to calculate these forces when the sphere is
much smaller than the beam’s wavelength (R / λ/10) [47].

In this regime, the electric field inside the sphere, at any given instant of
time, is approximately uniform. If the sphere is dielectric, this constant electric
field induces an electric dipole. Because the light electromagnetic field oscillates
as time evolves, the induced dipole will also oscillate, emitting electromagnetic
radiation. The problem, then, is one of electromagnetic scattering. Here, we
use the results given by [34] for this problem’s solution.

In the following discussion, the subscripts md, sp and 0 refer to the
quantities as measured in the propagation medium, the particle interior and
the vacuum, respectively. The force acting on a dielectric particle is given by:

~Fd = 1
4<αd∇|Ei|

2 + σext,d
2cmd

<( ~Ei × ~H∗i )− iεmdcmd
4ω σext,d∇× ( ~Ei × ~E∗i ) (5-2)

where αd is the effective polarizability of the dielectric particle and σext,d is the
extinction cross-section for this scattering process, which is given by:

σext,d = k0

ε0
=αd (5-3)

For a dielectric sphere, the effective polarizability is given approximately
by:

αd ≈ 3V εmd
εr − 1
εr + 2

[
1 + i

V k3
md

2π

(
εr − 1
εr + 2

)]
(5-4)

where εr = εsp/εmd and V is the sphere’s volume.
Each of the three terms in Equation 5-2 can be analyzed separately. The

first term is called the gradient force, and can be rewritten, using Equation
5-4 and the definition refractive index, ni = c/ci , as:

~Fd,grad(~r) = 2πnmdR3

c

(
m2 − 1
m2 + 2

)
∇Ii(~r) (5-5)

where m = nsp/nmd is the relative refractive index between the sphere and
the medium, Ii is the electromagnetic intensity and ~r is the sphere’s center
position. For m > 1, the gradient force pushed the particle to the region of
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highest intensity, while for m < 1, it pushes the particle out of that region,
reproducing the behaviour found in the geometric optics regime.

The gradient force is a conservative force derived from the trapping
potential:

Vd(~r) = −2πnmdR3

c

(
m2 − 1
m2 + 2

)
Ii(~r) (5-6)

In order to have a stable optical trap, the potential well must be much
larger than the average kinetic energy of the trapped particle. This is because
the thermal agitation of the molecules that constitute the medium causes the
sphere to have a probability of having instant kinetic energy much larger
than the average kinetic energy. According to statistical mechanics theory,
the average kinetic energy of the sphere is 3kBT/2. Therefore, we require
|Vmin| ≥ 10× 3kBT/2 = 15kBT [47].

The second term is called the scattering force. It is a non-conservative
force that occurs due to momentum transfer from the field to the sphere caused
by scattering and absorption processes. For a wave travelling in the z direction,
the scattering force can be rewritten, using Equation 5-4, the definition of
refractive index and Equation 5-3 for the cross section, as:

~Fd,scat(~r) = 128π5R6

3cλ4
0

(
m2 − 1
m2 + 2

)2

n5
mdIi(~r)ẑ (5-7)

The scattering force doesn’t reverse its direction when m < 1: it always
points in the wave’s propagation direction. Again, trapping will only be
possible if the restoring gradient force is sufficient to counterbalance the
scattering force.

Finally, the third term is called the spin-curl force. It is a result of
polarization gradients in the electromagnetic field. It is usually small when
compared to the other two force terms [48]. Also, since we’ll only use laser
beams with uniform polarization in this work, we won’t need to get into more
details about the spin-curl force.

Equations 5-5, 5-6 and 5-7 are valid for any beam propagating in the
z direction and could be adapted to other particle shapes by recalculating
the effective polarizability. In this work we are especially interested in the
forces arising from focusing a Gaussian beam in a dielectric sphere. In order to
calculate these forces, all we have to do is substitute Equations 2-13a and 2-14
in the equations for the gradient force, the scattering force and the trapping
potential.
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5.2.2
Numerical simulations for the dipole approximation

In order to understand how the forces and the potential depend on the
parameters nmd, nsp, NA (which is directly related to ω0), λ0 and R, it is useful
to plot those quantities as a function of the particle displacement. We consider
a Gaussian beam propagating in the +z direction with the waist located at the
z = 0 plane and define: Fz,scat(z) = Fd,scat(0, 0, z), Fz,grad(z) = Fd,grad(0, 0, z),
Fz,tot(z) = Fz,grad(z) + Fscat,z, Fx,grad(x) = Fd,grad(x, 0, 0), Vd(z) = Vd(0, 0, z)
and Vx(x) = Vd(x, 0, 0).

Figure 5.4(a) shows the forces in the z direction divided by the particle’s
weight for a Silica sphere trapped in water by a 20 mW laser beam at 780 nm.
The numerical aperture is 0.4. As it can be seen, the gradient force is always
opposite to the particle displacement. Since we divided it by the particle’s
weight, and it scales with R3, the curve is the same for the 3 particle sizes.
The scattering force, on the other hand, scales with R6 and is always positive.
As a result, for sufficiently large R, the total force is always positive, meaning
trapping is not possible, as it occurs for the 80 nm particle in Figure 5.4(a).
Since an equilibrium position must exist, we require that Fz(z) = 0 to have a
real solution in order for trapping to be possible, which sets an upper limit for
the sphere’s radius.

5.4(a): 5.4(b):

Figure 5.4: Dipole approximation: (a) force in the z direction; (b) potential in
the z direction.

.
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In order to estimate how the different parameters will affect the
presence of an equilibrium position, it is useful to look at the ratio
(Fscat,z)max/(Fgrad,z)max. This ratio indicates how dominant the scattering force
is. It is given by:

512π3n3
mdR

3

9
√

3λ3
0NA2

(
m2 − 1
m2 + 2

)
(5-8)

Figure 5.4(b) shows the trapping potential as a function of the displace-
ment in the z direction when x = y = 0. As it can be seen, the smaller
the particle, the smaller the well. Because we require |Vmin| > 15kBT , this
sets a lower limit for the sphere’s radius. Therefore, we conclude that, in this
example, only the sphere with radius R =60 nm would be stably trapped.
Mathematically, this lower bound can be calculated from:

|Vmin| =
4π2NA2n3

mdR
3P

cλ2
0

(
m2 − 1
m2 + 2

)
(5-9)

which is valid for a Gaussian beam.
Figure 5.5(a) shows the force in the x direction as a function of the

particle displacement for the same parameter values as used before. Again,
since we are dividing the force by the sphere’s weight, the three curves are
overlapped. As expected, the magnitude of the force is symmetric with respect
to the z axis and always points to the position x = 0. Figure 5.5(b) shows the
trapping potential as a function of the displacement in the x direction.

One important feature of the gradient force is that it has a linear
range both in the z direction and in the radial direction. Therefore, for
small displacements, the trapping potential can approximated by a harmonic
potential, and a spring constant can be calculated for the z and radial
directions. Neglecting the scattering force, the spring constants are given, for
a Gaussian beam trap, by:

κz = 8π4NA6n5
mdR

3P

λ4
0

(
m2 − 1
m2 + 2

)
(5-10a)

κx = κy = 16π4NA4n5
mdR

3P

λ4
0

(
m2 − 1
m2 + 2

)
(5-10b)

Since NA ≤ 1.3 for most objective lenses used in optical tweezers, the
trapping is generally stronger in the radial direction than in the z direction.
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5.5(a): 5.5(b):

Figure 5.5: Dipole approximation: (a) force in the x direction; (b) potential in
the x direction.

.

5.3
The intermediate regime

5.3.1
Generalized Mie theory

When the particle’s radius is neither much smaller nor much larger than
the wavelength, both the previous approximations break down. In this case,
the forces acting on the particle must be calculated using Mie scattering theory.
The full calculation is beyond the scope of this work and can be found in detail
in references such as [34]. Here, we will only outline such calculations and use
the toolbox provided by [49] to analyze the results when typical parameters
are used.

The force on the trapped particle arises from the transfer of momentum
from the electromagnetic field to the particle. Therefore, if we decompose the
electromagnetic field in incoming waves that propagate towards the center of
mass of the particle and outgoing waves that propagate out of the center
of mass of the particle, the momentum transferred to the sphere can be
found by calculating the momentum variation between the outgoing waves
and the incoming waves. If we define the particle’s center as the origin of the
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coordinate system, this expansion can be made in terms of vector spherical
wavefunctions [49]:

~Eout =
∞∑
n=1

n∑
m=−n

aoutnm
~M (1)
nm(k~r) + boutnm

~N (1)
nm(k~r) (5-11a)

~Ein =
∞∑
n=1

n∑
m=−n

ainnm ~M (2)
nm(k~r) + binnm ~N

(2)
nm(k~r) (5-11b)

where the vector spherical wavefunctions are given by:

~M (1,2)
nm (k~r) = Nnh

(1,2)
n (kr)~Cnm(r̂) (5-12a)

~N (1,2)
nm (k~r) = h(1,2)

n (kr)
krNn

~Pnm(r̂) +Nn

(
h

(1,2)
n−1 (kr)− nh(

m1, 2)(kr)
kr

)
~Bnm(r̂)

(5-12b)
where Nn = [n(n+ 1)]−1/2, h(1,2)

n (kr) are the spherical Hankel functions of the
first and second kinds and ~Cnm(r̂), ~Pnm(r̂) and ~Bnm(r̂) are the vector spherical
harmonics, an orthonormal basis for vector fields in spherical coordinates that
generalizes the more commonly encountered spherical harmonics [35].

Once the coefficients ainnm, binnm, aoutnm and aoutnm have been calculated, either
analytically, for the case of a sphere, or numerically, for the case of a non
spherical particle, they can be used to determine the force in the axial direction,
which is given by:

Fz =2nmdP
c

( ∞∑
n=1

n∑
m=−n

|ainnm|2 + |binnm|
)−1

×
∞∑
n=1

n∑
m=−n

m

n(n+ 1)<(ain∗nmbinnm − aout∗nm boutnm)−

− 1
n+ 1

[
n(n+ 2)(n−m+ 1)(n+m+ 1)

(2n+ 1)(2n+ 3)

]
×<(ainnmain∗n+1,m + binnmb

in∗
n+1,m − aoutnma

out∗
n+1,m − boutnmb

out∗
n+1,m)

(5-13)

5.3.2
Numerical simulations for the intermediate regime

Figure 5.6(a) and 5.6(b) shows the forces in the z and x directions,
respectively, for three different Silica spheres trapped in water. The laser power
is 50 mw, the numerical aperture is 0.95 and the wavelength is 780nm. As it
can be seen, the equilibrium position in the z direction exists for the three
particle sizes chosen for the simulation, but it is different for each size. The
force in the x direction is antisymmetric, as expected from the radial symmetry
of the situation. Just like in the dipole approximation, both forces have a linear
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range around the equilibrium position and, therefore, a spring constant can be
attributed to each direction.

Figure 5.6(c) and 5.6(d) shows the forces in the z and x directions, re-
spectively, for three different Silica spheres trapped in air. The laser parameters
are the same as the ones used in the water trap simulations. In the case of air
trapping, a new situation arises: an equilibrium position exists for R = 0.34µm
and R =1.66µm, but not for R =0.69µm. Differently from what happened in
the dipole approximation, there isn’t an upper limit for the particle radius
above which trapping is not possible and below which trapping is possible.

5.6(a): 5.6(b):

5.6(c): 5.6(d):

Figure 5.6: Forces in the z and x direction under the intermediate regime for a
particle trapped in: (a) and (b) water; (c) and (d) air. Aside from the medium’s
refractive index, all other parameters are the same.

.

A necessary condition for trapping to be possible is that the force in the z
direction is null for some z. We can evaluate if that is the case by looking at the
minimum value of this force: if the minimum value is positive, no equilibrium
position will exist. Figure 5.7(a) shows the minimum force in the z direction for
a sphere trapped in air by a 780 nm, 50 mW laser as a function of the particle’s
radius for three different numerical apertures. As it can be seen, for = 0.7, the
minimum force is positive for almost all values of R. As the numerical aperture
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increases, the minimum force decreases, and trapping becomes possible for
more values of R. Figure 5.7(b) shows the minimum force for spheres made of
two different materials trapped in water by a 780 nm, 50 mW laser when a 0.7
numerical aperture is used. As it can be seen, there are several values of R for
which trapping is not possible in the case of Polystyrene spheres, while in the
case of Silica spheres, the minimum force is always negative.

5.7(a): 5.7(b):

Figure 5.7: Minimum force in the z direction as a function of the sphere’s
radius for : (a) spheres trapped in air by beams having different numerical
apertures; (b) spheres made of different materials trapped in water.

.

5.4
Trapped Particle Motion

5.4.1
Equations of motion for a trapped particle

So far, we have been concerned only with analysing the existence of
an equilibrium position given the trapping parameters. But even when an
equilibrium position exists, a trapped particle undergoes a constant motion
due to the collisions with the molecules of the medium in which they are
immersed. This motion can be described by considering the three forces that
act on the particle.

The first of them is the force exerted by the trapping laser. As we’ve
already said, for small displacements from the equilibrium position, the trap
acts as a harmonic potential and, therefore, the force on the particle is
proportional to its displacement. In three dimensions, this takes the form of a
force ~Fharmonic = −κxxx̂− κyyŷ − κzzẑ, where κxi are the spring constants of
the trap.
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The second of them is a drag force exerted by the fluid in which the
particle is immersed. This force always opposes the motion and its magnitude
is, approximately, proportional to the particle velocity. Therefore, it takes the
form of a force ~Fdrag(t) = −γ~v(t). The γ coefficient is the drag coefficient, and
depends on the particle size and on the fluid viscosity, which, in turn, depends
on the temperature. For a spherical particle it can be determined by Stoke’s
law:

γ(T ) = 6πη(T )a (5-14)
where T is the fluid’s temperature, η(T ) is the fluid’s viscosity at temperature
T and a is the particle’s radius.

Finally, we have a random force caused by the collisions between the
fluid’s molecules and the trapped particle. This force is responsible for the
Brownian motion and takes the form of ~β(t) = γ

√
2D(Wx(t)x̂ + Wy(t)ŷ +

Wz(t)ẑ, where D is the diffusion coefficient and Wx(t), Wy(t) and Wz(t) are
independent white noises [34]. The diffusion coefficient is given by:

D = kBT

γ
(5-15)

where kB is the Boltzmann coefficient, and the white noise has the following
properties:

– 〈W (t)〉 = 0 for each t, where the brackets denote an average over
ensembles;

– 〈W (t)W (t′)〉 = δ(t− t′) for each t and t′;

Therefore, the equations of motion for a trapped particle is:

mẍi(t) = −κxi
xi(t)− γẋi(t) + βxi

(t) (5-16)
where xi = x, y, z.

The velocity of a particle moving in a fluid decreases exponentially, with
a characteristic time m/γ. If this characteristic time is sufficiently small, the
particle will rapidly lose its kinetic energy, and the particle’s inertia becomes
negligible [50]. For the case of a trapped sphere, this ratio is proportional to a2.
Therefore, for sufficiently small spheres, the inertial term can be dropped. For
a sphere with a radius of 1µm trapped in water, for example, m/γ ≈ 10−10s,
which, as we’ll see, is much smaller than the time scales in which we are
interested. The equations of motion, then, become:

0 = −kxi
xi(t)− γẋi(t) +

√
2γkBTWxi

(t) (5-17)
It is also useful to consider this equation in Fourier space:
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√
2γkBTW̃xi

(ω) = kxi
X̃i(ω) + iγωX̃i(ω) (5-18)

where the fourier transforms X̃(ω) and W̃ (ω) are to be calculated during a
finite time interval:

F̃ (ω) =
∫ Tm/2

−Tm/2
eiωtf(t) dt (5-19)

where Tm is the measuring time and ω = 2πn/Tm, with n ∈ Z.
Figure 5.8(a) shows the first 100 positions of a trapped particle during

a simulation, while 5.8(b) shows all of the 50 × 103 positions. The values
used for this simulation were κx = κy = 1 fN/nm, a = 1µm, T = 295 K,
η = 9.85× 10−4sPa and the time step was 4× 10−5s, resulting in a total time
of 2 s. In Figure 5.8(b) we can clearly observe the randomness of the resulting
particle movement, and in Figure 5.8(b) we can see the confinement of the
particle around the origin.

5.8(a): 5.8(b):

Figure 5.8: Brownian motion simulation considering the existence of a har-
monic force around the origin: (a) the first hundred points of the simulation;
(b) all of the fifty thousand points of the simulation

.

5.4.2
Autocorrelation analysis of the trapped motion

Due to the random behaviour of the particle position, the best way to
analyse the movement of a trapped particle is using statistics. One of the
quantities that might be used is the autocorrelation function (ACF) of the
particle position in a given direction, which is given by:

Cxi
(τ) = 〈xi(t)xi(t+ τ)〉 (5-20)

where the brackets refer to an ensemble average and xi = x, y, z.
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For a trapped particle, this quantity can be calculated from the equation
of motion, yielding [34]:

Cxi
(τ) = kBT

κxi

e−κτ/γ (5-21)

Therefore, the autocorrelation decreases exponentially with a character-
istic time γ/κxi

(or, equivalently, characteristic frequency κxi
/γ). The larger

the spring constant, the faster the autocorrelation approaches 0. For τ = 0,
Equations 5-20 and 5-21 tells us that Cxi

(0) = 〈xi(t)2〉 = kBT/κxi
. This is the

result we expect from the equipartition theorem, that asserts that the expected
values for the kinetic and potential energies in each direction are equal:

m〈ẋi2〉
2 = κxi

〈x2
i 〉

2 = kBT

2 (5-22)
Figure 5.9(a) shows the theoretical autocorrelation function for the values

used in the previous simulation, as well as the calculated autocorrelation
function. The value of Cx(τ) was calculated by taking the average of x(t)x(t+τ)
for each t, which approaches the average over ensembles indicated by Equation
5-20 for an ergodic system. By fitting the first 250 points, shown in Figure
5.9(b) to an exponential Ae−Bt, we find A = 3.95× 10−15m2 and B = 56.2Hz,
while the thoeretical values are A = 4.07× 10−15m2 and B = 53.9Hz.

5.9(a): 5.9(b):

Figure 5.9: Comparison between the ACF calculated using the points from the
previous simulation and the ACF predicted by the theory: (a) first 0.2 seconds;
(b) first 0.01 seconds.

.
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5.4.3
Power Spectral Density

Another quantity that might be used for analysing the trapped motion
is the Power Spectral Density (PSD) of the particle’s position. It is defined as:

Pxi
(ω) = 〈X̃

∗
i (ω)X̃i(ω)〉
Tm

(5-23)

that is, the squared absolute value of the Fourier transform of x(t) averaged
over ensembles divided by the measuring time Tm.

Solving Equation 5-18 for X̃i(ω) and substituting in Equation 5-23 we
can write:

Pxi
(f) =

D/(2π2Tm)〈W̃ ∗
xi

(ω)W̃xi
(ω)〉

f 2
c,xi

+ f 2 (5-24)

where D is the previously defined diffusion coefficient, and fc,xi
= κxi

/2πγ is
called the corner frequency. From the white noise properties, it is easy to show
that 〈W̃ ∗

xi
(ω)W̃xi

(ω)〉 = Tm. Therefore, the PSD for a trapped sphere is given
by [51]:

Pxi
(f) = D/(2π2)

f 2
c,xi

+ f 2 (5-25)

In a log-log plot, for f � fc,xi
, Pxi

is approximately constant (logPxi
≈

log (D/2π2f 2
c,xi

)), while for f � fc,xi
, it decreases linearly (logPxi

≈
log (D/2π2)− 2 log f).

Figure 5.10 shows the PSD for the position in the x direction for
the previously described simulation. In order to average the spectrum over
ensembles, the simulation was extended to cover 10 seconds instead of 2,
resulting in a data set of 250×3 points. The data was then divided in a 100
smaller sets of 2500 points. The simulation data in Figure 5.10 (orange points)
is the average of the PSDs calculated for each of the 100 smaller sets. This
average PSD was fitted to a function P (f) = A/(f 2

c + f 2) (dashed curve),
which gave a value of fc = 8.30Hz for the corner frequency, which is consistent
with the theoretical value fc = 53.9/2π = 8.59Hz.
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Figure 5.10: PSD calculated using the points from the previous simulation and
a Lorenztian function fitted to it.

In the next chapter, we’ll present an optical tweezer capable of trapping
micro-spheres in a water medium in the intermediate regime described in
Section 5.3, as well as the application of the motion analyses presented in
Section 5.4.
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6
Optical Tweezers: Experiment

In this chapter we describe the implementation of an optical tweezer
capable of trapping particles in a water medium in the intermediate regime
(size range from 0.5µm to 5µm) using a laser with a wavelength of 780 nm. We
also use the motion analysis presented in the last chapter to obtain information
about the optical trap. Finally, we present our work under progress on an
optical tweezer capable of trapping particles in vacuum.

The setup we used for trapping micron-sized spheres is shown in Figure
6.1. On Part I, the laser is collimated, passes through a QWP and a HWP, in
order to acquire linear polarization in a specific direction and is reflected by a
steering mirror SM1. On Part II, the beam is expanded by two lenses (omitted
in the figure) in a configuration as the one shown in Figure 2.9(b), reflected by
a second steering mirror SM2 into the vertical direction and gets transmitted
by a PBS. Then, an objective lens O1 focuses the beam on a sample formed by
a solution of micro-spheres dispersed in water, creating the optical trap itself.

x

y

�/4 �/2

780nm

I)

II)

f1

Figure 6.1: Schematic showing the optical setup we used in the implementation
of our optical tweezer.
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In order to visualize the micro-spheres, the light emitted by a Light
Emitting Diode (LED) is partially transmitted by a BS and focused on the
sample by a second objective lens O2, which acts as a microscope condenser.
The first objective then acts as a typical microscope objective, collecting the
light from the LED and creating an image of the sample. This collected light
is reflected by the PBS and focused on a CCD camera sensor.

Finally, in order to measure the trapped particle’s motion, we use an
interferometry scheme. The laser beam transmitted by the trapped particle
is collected by the objective lens O2 and partially reflected by the BS onto a
Position Sensitive Detector (PS Detector), which provides information about
the particle’s position, by means that will be explained in the next section.

6.1
General Aspects

6.1.1
Real position measurements

One of the main applications for optical tweezers the measurement of tiny
forces [23, 29]. In such applications, an unknown force is applied to a trapped
particle and the response of the particle is used to get information about the
applied force. In order to do so, the trapped particle’s dynamics must be well
known, which involves knowing the trap stiffness κ, the drag coefficient γ and
the medium’s temperature T [52].

In the previous chapter we presented two quantities that can be calcu-
lated from the measurement of the particle’s position in a given direction. In a
real situation, rather than directly measuring the particle’s position, a quan-
tity that is proportional to the particle’s position is measured. One might, for
example, record a video of the trapped particle using a fast camera and then
find out the particle’s position at each frame using a software. Provided that
the image is free of distortions, this would directly yield the particle’s position
in units of pixels, which would be proportional to the particle’s real position.

An alternative method is to collect the light that is scattered by the
trapped particle in the forward direction by placing an objective lens facing
the objective lens responsible for creating the trap, as shown in Figure 6.1.
Then, small displacements of the particle from the equilibrium position cause
the collected light to be deviated by a small angle that is proportional to
the particle’s displacement [34]. To detect this deviation, a Position Sensitive
Detector can be used.

A PS Detector is a device whose outputs are three different voltage signals
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X, Y and SUM. The signal X (Y) is proportional to the total light power hitting
the detector multiplied by the coordinate xD (yD) at which the light hits the
detector. The signal SUM is simply proportional to the total power hitting the
detector. Therefore:

X = cXPxD Y = cY PyD SUM = cSUMP (6-1)

where cX , cY and cSUM are constants of proportionality.
When the beam is deviated due to the particle’s displacement, the

coordinate at which the light hits the detector changes. Therefore, measuring
the signals X and SUM simultaneously, and then dividing X by SUM at each
instant of time, yields a number X proportional to the particle’s position in the
x direction, that is: X = βxx. The displacement of the point at which the beam
hits the PS detector depends on several variables, such as the objective lens
used to collect the forward scattered light, the distance from this objective
lens to the trapped particle and to the PS detector and the particle’s size.
Therefore, the constant of proportionality βx is, a priori, unknown.

Using the definitions given by Equations 5-20 and 5-23, it is easy to see
that the autocorrelation function and the power spectral density for X are
given, respectively, by:

CX(τ) = β2
x

kBT

κx
e−κxτ/γ (6-2a)

PX(f) = β2
x

D/(2π2)
f 2
c,x + f 2 (6-2b)

Provided that the particle’s size and the medium’s temperature are well
known, the drag coefficient γ can be calculated using Equation 5-14. If the
particle is trapped near a surface, which is often the case when dealing with
liquid media, the drag coefficient becomes:

γs(T ) = γ(T )
1− 9

16

(
R
h

)
+ 1

8

(
R
h

)3
− 45

256

(
R
h

)4
− 1

16

(
R
h

)5 (6-3)

where R is the sphere’s radius and h is the distance from the sphere center to
the surface.

Once γ has been calculated form Equation 6-3, the spring constant κx
can be determined from either measuring the corner frequency on the power
spectral density, or the exponential characteristic time of the autocorrelation
function. Finally, the constant βx can be determined using the value of the
autocorrelation function, given by Equation 5-21, for τ = 0:
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β2
x = CX(0)κx

kBT
(6-4)

Since the ACF is defined as an ensemble average, in order to calculate
it, we measure the position of the particle with a sampling rate of 25 kHz over
intervals of time of 0.1 s twenty times with an interval of about 2 s between each
measurement. Since, as we’ll see, the correlation time is much smaller than 2 s,
each measurement can be considered a different realization of the experiment.
Then, we average the twenty autocorrelation functions calculated for each
interval of 0.1 s and take the result of this average to be one measurement
of the autocorrelation function.

For the PSD, which is also defined as an ensemble average, we measure
the position of the particle over intervals of 0.1 s fifty times, with an interval of
about 2 s between each measurement. Then, a single measurement of the PSD
is taken to be the average of the fifty power spectral densities calculated for
each interval of 0.1 s.

As a final remark, it necessary to say that we assume a perfeclty Gaussian
beam, implying equal spring constants in the x and y direction. Therefore,
the measurements are made in only one direction. Also, since the position is
given by the division between the voltages from signal X and sginal SUM, the
position is measured in arbitrary units (a.u.).

6.1.2
Experimental procedure

In our setup, a laser with a wavelength of 780 nm is collimated using an
aespheric lens with a focal distance f1 of 15.36 mm, resulting in a beam waist of
1.43 mm, which is further expanded by two lenses with focal distances 35.0 mm
and 60.0 mm, resulting in a beam waist of about 2.5 mm. The wave plates are
then rotated in order to maximize the transmission through the PBS. The
alignment of the beam consists of 5 steps.

First, both objectives are removed from their mountings. As shown
in Figure 6.2(a), the objective O1 (Olympus UPlanFLN 100x, NA=1.3) is
replaced by a 2 inches tube having an iris threaded to it, while a second iris
is placed before the PBS. The two steering mirrors are then used to make
the beam pass though the centers of both irises, which is sufficient to provide
coarse alignment.

DBD
PUC-Rio - Certificação Digital Nº 1812659/CA



Chapter 6. Optical Tweezers: Experiment 82

6.2(a): 6.2(b): 6.2(c): 6.2(d):

Figure 6.2: Alignment procedure used in our implementation: (a) Coarse
alignment of the beam and the objective’s longitudinal axis; (b) Positioning of
the camera and fine alignment of the beam; (c) Positioning of the PS detector;
(d) Positioning of the second objetive lens. The solid red arrows represent the
trapping laser beam, while the dashed red arrows represent the back reflection.

.

Then, the objetive O1 is positioned and a coverslip is placed after it,
as shown in Figure 6.2(b), causing the beam to be partially reflected back to
the objective. The distance between the coverslip and the objective is adjusted
in order to cause the back reflection to be collimated. Then, a lens with focal
distance f2 of 150 mm is used to focus the back reflection, and the CCD camera
sensor (Logitech C270) is placed so that the beam is focused at the center of
it. This ensures that the plane whose image is going to be formed at the
CCD sensor is the same plane where the laser beam is focused. By moving
the coverslip closer or further from the objective, fine alignment of the beam
can be performed by using the steering mirrors to make the back reflection’s
pattern symmetric. Figure 6.3 shows the image seen on the camera when the
beam is misaligned and when it is properly aligned.

After these two steps, the beam is aligned to the trapping objective,
and the camera is properly placed. It is necessary then to place both the PS
detector and the second objective lens. To do so, the first objective is once
more removed and the PS detector is placed so that the beam reflected by the
BS hits it in the center, as shown in Figure 6.2(c). Then, the two objectives
are placed. The vertical position of the objective O2 (Olympus PlanN 10x,
NA=0.25) is adjusted, by threading it more or less to its mounting, so that
the beam is focused between the BS and the detector and fills almost all of
the PS detector’s sensor when hitting it. The horizontal position of the second
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lens is adjusted, using the mount’s knobs, which can be seen in Figure 6.2(d),
to translate it, so that the beam hits the PS detector’s sensor at its center.

6.3(a): 6.3(b):

Figure 6.3: Back reflection pattern observed in the camera when: (a) the beam
is not properly aligned; (b) the beam is properly aligned.

.

Finally, the sample containing the spheres can be placed. We use a
sample such as the one shown in Figure 6.4(a): the water with spheres is
placed between two coverslips that are partially fixed to a rubber ring using
grease. The sample is held on a xyz tranlation stage (Thorlabs Max313/M),
providing micrometric precision over the sample’s position. Figure 6.4(b) shows
our complete setup.

6.4(a): 6.4(b):

Figure 6.4: Final configuration of the optical setup with a sample in place:
(a) sample containing spheres immersed in water; (b) complete optical tweezer
setup. The red arrows represent the trapping laser beam, while the yellow ones
represent the light emitted by the LED.

.
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6.2
Initial tests

In order to test our optical tweezer we attempt to trap several different
spheres. Once a sample containing a specific size of sphere was positioned,
the translation stage was used to move one of the many spheres contained in
the sample towards the laser focus. Figure 6.6 shows trapped spheres of seven
different sizes and two different materials: Polystyrene spheres with diameters
of 0.505µm, 0.746µm, 1.925µm, 3.00µm and 4.52µm and Silica spheres with
diameters of 1.15µm and 2.47µm.

In order to test if a sphere is stably trapped, we use the translation stage
to move the sample. If a particle is stably trapped, the sample moves, together
with all spheres that are not trapped, while the trapped particle remains still.
This can be seen in Figure 6.5, that shows four frames of a video recorded
while sphere (Silica, 2.47µm), marked by a red circle, was stably trapped and
the sample was moved in the direction pointed by the arrow. As it can be seen,
the spheres that are not trapped, marked by yellow circles, move together with
the sample, while the trapped sphere remains in place.

Figure 6.5: Trapped 2.47µm Silica sphere. The time interval between frames
is 1/15 seconds and the sample is moving upwards. The red circle highlights
the trapped particle, while the yellow circles highlight particles that are not
trapped.

One interesting observed fact was the existence of two stable trapping
positions when the 0.505m Polystyrene sphere was used, which are shown in
Figures 6.6(a) and 6.6(b). This is due to the existence of multiple z’s satisfying
Fz(z) = 0 and F (z) < 0, which are the conditions for stable trapping, when
small particles are used [53].
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6.6(a): 6.6(b):

6.6(c): 6.6(d):

6.6(e): 6.6(f):

6.6(g): 6.6(h):

Figure 6.6: Micro-spheres of different diameters and materials in our opti-
cal trap. Polystyrene spheres: (a) 0.505µm at the first stable position; (b)
0.505µm at the second stable position; (c) 0.746µm; (d) 1.925µm; (e) 3.00µm;
(f)4.52µm. Silica spheres: (g) 1.15µm; (h) 2.47µm.

.
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Besides the already mentioned spheres, we also tried to trap 0.99µm
Polystyrene spheres, but stable trapping was not observed. Figure 6.7 shows
an attempt of trapping one of those spheres. Initially, the sphere is positioned
bellow the focus. Then, it is pulled by the optical force in the direction of the
focus, but it ends up being pushed away from the focus. Thus, we can conclude
that the force pushing the sphere in the direction of the propagation of the
beam was greater than the force pulling the sphere towards the focus.

Figure 6.7: Attempt of trapping a 0.99µm Polystyrene sphere. The time
interval between frames is 1/15 seconds and the red circle indicates the
particle’s position.

This behaviour was observed for other sizes of Polystyrene spheres we
tested, but, differently from the 0.99µm one, they could be trapped after a
few attempts. The same was not true for Silica spheres. This is justified by
the refractive index of each material: while the refractive index is about 1.46
for Silica, it is equal to 1.59 for Polystyrene. The fact that the scattering force
scales faster with the refractive index than the gradient force implies that it
should be easier to trap Silica spheres than Polystyrene spheres.

6.3
Position Measurements

6.3.1
Power Spectral Density Analysis

The first method we used to study our optical tweezer was the power spec-
tral density. Figure 6.8 shows the PSD for four different spheres: Polystyrene
spheres with diameters of 1.925µm and 3.00µm and Silica spheres with diam-
eters of 1.15µm and 2.47µm. The laser power was 50 mW, the spheres were
kept about 5µm away from the bottom coverslip (measured from the center
of the sphere to the top surface of the coverslip) and the temperature of the
room was 295 K. The plotted points represent the average of different PSD’s
(each of them calculated following the procedure described in the first section

DBD
PUC-Rio - Certificação Digital Nº 1812659/CA



Chapter 6. Optical Tweezers: Experiment 87

of this chapter), while the error bars represent the standard deviation for these
averages.

6.8(a): 6.8(b):

6.8(c): 6.8(d):

Figure 6.8: Power spectral density of the position of the trapped particle in
one direction for four different micro-spheres: (a) 1.15µm Silica sphere; (b)
1.925µm Polystyrene sphere; (c) 2.47µm Silica sphere; (d) 3.00µm Polystyrene
sphere.

.

By fitting each of these spectra to a Lorentzian, as given by equation 6-2b,
we could get the values of the corner frequencies fc, and, by using Equation
6-3 to calculate the drag coefficient, we could get the spring constants. We
assumed an uncertainty of 0.5µm in the distance between the sphere and the
coverslip. Table 6.1 summarizes the results we obtained. The curves were fitted
for frequencies up to 1 kHz. For larger frequencies, the PSD, which is supposed
to decay linearly in a log-log plot, starts to decay not linearly due to low signal
to noise ratio, until it becomes flat for frequencies larger than about 10 kHz.
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Diameter (µm) Averaged PSD’s fc(Hz) κ(fN/nm)
1.15 10 463.9±7.0 32.18±0.53
1.925 5 175.7±0.5 21.39±0.26
2.47 6 78.58±2.04 12.70±0.39
3.00 5 24.07±0.29 4.89±0.11

Table 6.1: Results obtained in the PSD analyses for four different spheres.

Also, since the PSD is discrete and is only evaluated for frequencies
f = n × 10 Hz, where n is an integer, the fitted curve and the calculated
PSD show poor agreement when the corner frequency is small, once the fitting
process gets dominated by the linearly decaying part of the PSD. This can be
seen in part D of Figure 6.8 for the 3.00µm sphere (fc=24.07± 0.29Hz).

6.3.2
Autocorrelation Function Analysis

For the ACF analysis, we scanned the laser power from 5 mW to 50 mW,
using 5 mW steps, and calculated the ACF, as described in the first chapter
of this chapter, for each laser power value. Then, each ACF was fitted to the
exponential given by Equation 6-2a. This yielded one value for κ/γ and one
value for CX(0) = β2〈x2〉 for each laser power. Figure 6.9 displays the fitted
values for these two quantities. The points represent the values obtained by
averaging the fitted values obtained by repeating the measurement four times,
while the error bars represent the standard deviation for these averages.

Since the force exerted by the laser beam is due to the transfer of
momentum from the laser photons to the sphere and the laser power is
proportional to the number of photons in the laser beam, we expect the spring
constant to be proportional to the laser power. Therefore, we expect κ/γ = aP

and CX(0) = b/P , where a and b are constants and P is the laser. By fitting
the plotted points to these curves, we can find expressions for [κ/γ](P ) and
[CX(0)](P ).
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6.9(a): 6.9(b):

6.9(c): 6.9(d):

Figure 6.9: Characteristic frequency (κ/γ) as a function of the laser power
for: (a) 1.15µm Silica and (c) 2.47µm Silica spheres; and mean squared
displacement for: (b) 1.15µm and (d) 2.47µm Silica spheres.

.

Using Equation 6-3 to calculate γs for both spheres, we can get expres-
sions for κ(P ), and by using these expressions together with Equation 5-22, we
can get expressions for 〈x2〉(P ). Finally, dividing the expressions for (CX(0))(P )
and 〈x2〉(P ), we can get the values of the parameters β that allows for the
conversion between arbitrary units and particle displacement. Table 6.2 sum-
marizes the obtained results.

D(µm) A(fN/mW.nm) (κ(P)=AP) B(nm2mW) (〈x2〉=B/P) β(10−3/nm)
1.15 (5.86± 0.06)× 10−1 (6.95± 0.07)× 103 5.23± 0.04
2.47 (2.61± 0.10)× 10−1 (1.56± 0.06)× 104 2.34± 0.05

Table 6.2: Results obtained in the ACF analyses for two different spheres.

Using the value of A for each sphere, we find that κ(50 mW) = 29.3 ±
0.3fN/nm for the 1.15µm and κ(50 mW) = 13.1 ± 0.5fN/nm for the 2.47µm,
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which shows reasonable agreement between the PSD and the ACF analyses.

6.3.3
Discussions

The optical tweezer we implemented was capable of stably trapping
spheres of different sizes and materials. Also, the measurement system based
on forward scattering interferometry yielded good position measurements, that
showed reasonable agreement with the theoretical analysis when both the PSD
and the ACF were calculated [51].

One of the main difficulties in performing the measurements was the long
time interval it took to perform data acquisition. This was mainly due to the
use of an oscilloscope as the interface between the detector and the computer.
Long measurement time imply higher probability of a second sphere entering
the trap, which causes measurements to be interrupted. If an equipment
capable of acquiring more data in less time is used in the future, we expect
more precision in the measurements, due to increased number of data to be
averaged.
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7
Conclusions and Perspectives

In this work we presented the progress made towards the realization of a
small force sensor based in the interaction between a membrane and a micro
sphere inside a cavity. We studied cavities in different configurations, achieving
a cavity finesse of about 1000. Also, we observed valleys in the reflection of
the cavity that allows us to proceed to the stabilization of the cavity. We have
also presented an optical tweezer capable of trapping micro-spheres of different
sizes in a water medium, as well as the setup needed to measure the position
of trapped particles. These achievements directly allows us to take the next
steps, which are summarized in the rest of this chapter.

Cavity stabilization and subsequent implementations

In order to stabilize the cavity, we will use a Pound-Drever-Hall scheme,
which is briefly summarized in Figure 7.1 [54]. A local oscillator LO generates
a signal that is uses by a frequency modulator FM to modulate the laser’s
frequency. If the laser frequency is less than the cavity’s resonance frequency, an
increase in the frequency will decrease the cavity’s reflection, which is measured
by a detector DET. Therefore, the signal from DET will oscillate out of phase
with the modulation signal. If the frequency is greater than the resonance
frequency, the opposite will happen. Therefore, by using a mixer to compare
the phases between the local oscillator’s signal and the detector’s signal, an
error signal can be generated and used by a PID actuator to make the laser’s
frequency match the cavity’s resonance frequency.

PBS
LASER

~

FM

LO DETPID

M

CM1 CM2

Figure 7.1: Simplified setup for implementing a Pound-Drever-Hall stabiliza-
tion scheme.
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Once that is done, we will be able to place the cavity inside a vac-
uum chamber, which we already have, and insert the membrane (Norcada
NX5050CS) into the cavity in order to study its dynamics. When the mem-
brane is placed, a cavity detuning ωcav(x) = (c/L) cos−1[|rc|cos(4πx/λ)], where
x is the membrane’s position, L is the cavity’s length, rc is the membrane’s
reflection coefficient and λ is the wavelength, is introduced [55]. Therefore, by
looking at the error signal generated by the PDH scheme, it is possible to get
information about the membrane’s position [27].

If the membrane is placed between two cavity’s nodes, the detuning will
be proportional, to lowest order, to x2 [56, 57]. In this case, the Hamiltonian
commutes with the membrane’s phonon number operator, allowing for a
quantum-non-demolition [58] measurement of the membrane’s eigenstate [59].

The knowledge regarding optical cavities we acquired through this work
together with the stabilization of the cavity will also be applied to implement
a squeezed light source by placing a type-I nonlinear crystal inside the optical
cavity. Since the uncertainty in the electric field of squeezed light is smaller
than that of coherent light, it is possible that this light source can be used to
improve the sensitivity of our final force sensor [60]. Another possibility is to
use the membrane in the middle setup to create squeezed light [61].

Future work with optical traps in liquid media

Although we need an optical tweezer capable of trapping spheres in
vacuum, the optical tweezer we implemented offers interesting possibilities to
be explored in the future. First of them, is the implementation of an optical
tweezer using general-purpose optical elements, which would be of interest to
the Optics community [62].

In this setup, the high numerical aperture objective lens, which is an
expensive element and is often not encountered in optics laboratories, is
replaced by an aspheric lens having a small focal distance. We have performed
some tests using this kind of lens (Thorlabs C330TM-A) in our tweezer, and
2.47µm Silica particles could be trapped for several seconds by a 532 nm laser,
which was confirmed by moving the sample and observing that the sphere
remained still. Figure 7.2(a) shows a sphere trapped under those conditions.
The laser used was a commercial laser pointer coupled to a fiber in order to
spatially filter it, which could mean even further cost reduction.

The PS detector can also be replaced by a pair of lenses, a beam splitter
and a pair of silicon detectors, all of which are commonly encountered in optics
laboratories. This equivalent system is illustrated in Figure 7.2(b). The forward
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scattered light collected in an optical tweezer is splitted into two beams, one
of which is focused on a detector DET 1, while the other is partially blocked
by a knife placed so that only half of the beam gets to the detector DET2.
In this configuration, the signal of DET1 measures the total collected power,
while the detector DET2 outputs a voltage that is proportional to the total
power and to the beam deviation. Therefore, this setup generates signals that
are analogous to the signals X (or Y, depending on which arm the knife is
placed) and SUM from a PS detector.

7.2(a):

PBS

D
E
T
1

DET2

K
n
if
e

OT

x

y

7.2(b):

Figure 7.2: Reduced cost optical tweezer implementation: (a) 2.47µm Silica
sphere trapped by an aspheric lens; (b) alternative setup for measuring a
trapped particle’s position.

.

Another possibility we would like to explore is the trapping of particles
that have a refractive index smaller than that of the medium in which they are
in. If the particle’s refractive index is smaller than the medium’s refractive
index, the particles will get expelled from the regions in which the laser
intensity is higher [8]. Therefore, in order to trap a particle in this regime, we
have to use laser beams that have a dark spot surrounded by a high intensity
region at its focus.

Figure 7.3 shows the transverse intensity pattern at the focal plane
resulting from the interference of a Gaussian mode and a l = 0, p = 1 Laguerre-
Gauss mode having a phase difference of π at the focal plane. As it can
be seen, the intensity is null at the center of the beam. If the right modes
are interfered, this behaviour can be extended to the longitudinal intensity
pattern [63, 64], and the a sphere having refractive index smaller than the
medium’s refractive index could, at least in principle, be trapped in the dark
focal region, encapsulated by a high intensity light layer. This might useful in
biology applications when dealing with microorganisms that are damaged by
the high intensity present in the focus of a regular optical tweezer [65,66].
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Figure 7.3: Intensity pattern resulting from the interference between a Gaus-
sian beam and a l = 0, p = 1 Laguerre-Gauss beam having a phase difference
of π.

Optical tweezers in vacuum

We have already started implementing an optical tweezer in vacuum,
using a setup as the one shown in Figure 7.4. The system can be broken down
into three parts. First, there is the optical trap itself. A 780 nm laser beam is
collimated using a lens f1 reflected by two steering mirrors SM1 and SM2,
transmitted by a dichroic mirror DM1 and focused by an objective lens, which
is inside a vacuum chamber, creating the optical trap.

In order to see the trapped particle, a 405 nm laser is focused by a lens
f2 at the objective lens focal region. If a particle is trapped, it will scatter the
405 nm beam, and this scattered light will be collected by the objective lens.
This collected is then reflected by the dichroic mirror and focused by a lens
f3 on a CCD camera sensor. In order to measure the particle position, we can
split the collected 405 nm light into two beams and focus one of them in a
PS detector. Alternatively, we can place a second objective, as we did in our
optical tweezer in water, and collect the forward scattered light.

Finally, we have the system that carries the spheres into the vacuum
chamber [67]. With the valve V 1 open, while the valve V 2 is closed, the
vacuum paump reduces the pressure inside the vacuum chamber to a pressure
of 1 mbar. Then, a nebulizer NB nebulizes a solution made of spheres and
isopropyl alcohol, creating a cloud of spheres inside a glass dome. The valve
V 1 is closed and the valve V 2 is opened. The pressure difference between the
vacuum chamber and the dome, then, pushes cloud to the chamber’s interior.
Once a sphere is trapped, the pressure can be once again reduced.
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Figure 7.4: Intensity pattern resulting from the interference between a Gaus-
sian beam and a l = 0, p = 1 Laguerre-Gauss beam having a phase difference
of π.

Up to now, we haven’t been able to observe stably trapped particles in our
system. This is mainly due to two factors. First, we do not have an objective
with high enough numerical aperture to use in vacuum [68]. The objective
used in the optical tweezer in water is an oil immersion objective, having poor
performance when used to focus light in a gas (or vacuum) medium. Therefore,
we have only tested our system using an objective with a numerical aperture
of 0.7 (Olympus LUCPlanFLN 60x). One possible solution for that would
be the use of a custom made objective lens, which would also allow for the
achievement of lower pressures inside the vacuum chamber [69].

The second factor regards the laser power we use and the size of the
particle we are trying to trap. The 780 nm laser provides a power of 50mW ,
which is further reduced due to the necessity of overfilling [70], and the Silica
particle has a radius of 73 nm. This means we would be working in the dipole
regime and, therefore, the laser power would have to be high enough in order to
create a potential much larger than the particle’s average kinetic energy [47].

For the time being, we have been using the image system to observe the
motion of the particles inside the chamber in order to study them in terms
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of statistical mechanics [71, 72]. Another student is currently developing a
software capable of tracking the spheres in the image provided by the CCD
camera and differentiate their masses by analysing their trajectories. We hope
this will clarify if the particles we observe are the 73 nm Silica spheres or a
droplet consisting of the particle immersed in isopropyl alcohol. Figure 7.5
shows four spheres, with their trajectories traced out by this software.

Figure 7.5: Spheres inside our chamber and their trajectories, traced out by a
software. Image courtesy of Igor Brandão.

The capability to trap nanospheres in vacuum, together with the realiza-
tion of a setup having a membrane inside a cavity, will allow us to proceed with
the implementation of the force sensor. Building this sensor would be a great
achievement, since a setup that integrates a membrane, a trapped sphere and
a Fabry-Perót cavity is yet to be studied, although progress has been made in
this direction over the past few years.

As we’ve already pointed out, the interaction between membranes and a
cavities has been extensively studied [25, 27, 73], as well as between levitated
spheres and cavities [26,74,75]. The levitation of a nanosphere near a membrane
has also been realized, with subwavelength distances being achieved [76].
Therefore, combining these three elements in a single setup would be of great
interest to the community.

One possible way to do so would be to apply a reflective coating to the
front end of an objective lens and use it as the output mirror of a Fabry-
Pérot cavity. This configuration is shown in Figure 7.6. The reflective coating -
represented in a light grey tonality - has high transmission for the wavelength of
the trapping laser - represented by the blue beam - and high reflectivity for the
wavelength of the cavity laser - represented by the red beam. The membrane
is positioned near the focal point, so that the particle is trapped close to it. In
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a configuration like this, the cavity’s optical field, the membrane’s motion and
the sphere’s motion would be coupled.

Figure 7.6: Schematic of a setup in which the cavity’s optical field, the
membrane’s motion and the sphere’s motion are coupled.
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